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With the popularity of smartphones, large-scale road sensing data is being collected to perform traffic prediction, which is an

important task in modern society. Due to the nature of the roving sensors on smartphones, the collected traffic data which is

in the form of multivariate time series, is often temporally sparse and unevenly distributed across regions. Moreover, different

regions can have different traffic patterns, which makes it challenging to adapt models learned from regions with sufficient

training data to target regions. Given that many regions may have very sparse data, it is also impossible to build individual

models for each region separately. In this paper, we propose a meta-learning based framework named MetaTP to overcome

these challenges. MetaTP has two key parts, i.e., basic traffic prediction network (base model) and meta-knowledge transfer.

In base model, a two-layer interpolation network is employed to map original time series onto uniformly-spaced reference

time points, so that temporal prediction can be effectively performed in the reference space. The meta-learning framework is

employed to transfer knowledge from source regions with a large amount of data to target regions with a few data examples

via fast adaptation, in order to improve model generalizability on target regions. Moreover, we use two memory networks to

capture the global patterns of spatial and temporal information across regions. We evaluate the proposed framework on two

real-world datasets, and experimental results show the effectiveness of the proposed framework.
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1 INTRODUCTION

Traffic prediction plays an important role in modern society. Effective traffic prediction can directly alleviate
the issue of traffic congestion, which costs each American almost 100 hours a year1, by providing insights for
urban planning and traffic management to increase the efficiency of the transportation system [64]. Thus, traffic
prediction has drawn great interests from government, traffic managers, and researchers for a long time.
The data used for traffic prediction mainly comes from two categories of sensors, static sensors (e.g., loop

detectors and traffic cameras [20, 59]) and roving sensors (e.g., GPS device installed on a taxi and smartphones [36,
48, 66]). Data collected by static sensors is usually sampled at uniformly-spaced timestamps, while the data
from roving sensors is temporally sparser and the amount of data varies from location to location. Due to high
deployment and maintenance cost, the data from static sensors suffer from limited coverage as these sensors are
typically installed at only limited/strategic locations like highway entrances and exits. On the other hand, the
roving sensors cover larger areas, especially with the increasing ubiquity of smartphones. However, the nature of
roving sensors results in more irregularity in data collection.
Given recent advances in machine learning, many data-driven approaches have been developed for traffic

prediction by formulating it as a spatial-temporal prediction problem. The objective of these approaches is to
model the traffic patterns simultaneously for multiple locations within a target region and then predict their traffic
conditions in the future. A general framework of these approaches [4, 13, 36, 56, 63] is to integrate graph neural
network (GNN) [6, 24] or graph convolutional network (GCN) [55] with long short-term memory (LSTM) [23].
Although these approaches have shown encouraging results in some isolated and clean testing scenarios, there
are several major challenges that prevent them from reaching the same level of success in real-world traffic
systems due to the nature of roving sensors:
Temporal sparsity: The data from roving sensors is often characterized by irregular/non-uniform temporal
samples. For example, it is reported in previous work [48] that a large data set collected from tens of thousands
of taxis has only 0.03% of all time intervals filled with data samples, even when the time interval was set to a
coarse value of 30 minutes. For regions with only a few number of roving sensors, this issue can become even
more severe. Such data can also significantly degrade the performance of standard temporal machine learning
models such as LSTM. Although there have been many approaches on handling irregularly spaced time series,
most of them use simple methods such as linear or polynomial interpolation without fully exploiting temporal
correlations of the time series. Theses methods can have much worse performance given high sparsity rate.
Unevenly distributed: The amount of historical data from roving sensors may vary across different segments.
As a result, we may have very limited data for certain regions, which makes it hard to train models for traffic
prediction in these regions. Also, due to unevenly distributed data, information from neighbors of a location is
often not available, which is not suitable to apply standard graph-based machine learning models such as GNN
and GCN.
Spatial heterogeneity: Different roads and different regions can exhibit different traffic patterns given different
environmental conditions (e.g., some regions may have more frequent road construction, and some roads are
close to school district). Hence, models trained on one region cannot be directly used to predict traffic for roads
within another region. This is one of the major reasons for many previous approaches [53, 54, 58] to divide a
road network region into disjoint blocks and performing prediction separately for each block. However, given
very limited training data for certain regions, it becomes challenging to build individual models for every region.

To address these challenges, we propose a newMeta-learning based Traffic Prediction framework, namely
MetaTP, on temporally sparse and unevenly distributed road sensing data. Our framework consists of two major
components, a time-series prediction model and a meta-knowledge learner. The time series prediction model is
responsible for discovering temporal patterns from traffic data and uses learned patterns to interpolate values

1https://inrix.com/press-releases/2019-traffic-scorecard-us/
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and conduct the prediction. The meta-knowledge learner aims to extract generalizable patterns across different
regions by informing the initialization of the time-series prediction model.
In particular, the time-series prediction model uses a two-layer interpolation network (inspired by semi-

parametric interpolation [1, 40, 41]), which transforms the input data onto predefined uniformly-spaced reference
time points. This not only carries forward the information from individual time series, but also captures the
cross-dimensional correlations of a multivariate time series. Through the interpolation network, the temporal
sparsity issue of multivariate time series of traffic data can be well handled. After the interpolation, we use an
LSTM model with two memory networks to conduct traffic prediction by leveraging the spatial and temporal
patterns learned from the data.
The meta-knowledge learner is used to handle the problem of unevenly distributed data and the spatial

heterogeneity. Our meta-knowledge learner follows the strategy of transferring useful knowledge amongst
multiple regions. The intuition behind usability of knowledge transfer in our problem is that, despite the
differences of data distributions and patterns in different regions, transferable knowledge in the form of shared
common features exists and can assist in addressing the unevenly distributed data problem. Locations with
sufficient data can be used to train a model, i.e. source regions, and the knowledge is then transferred to locations
suffering from data scarcity, i.e., target regions. To achieve this goal, we employ a model-agnostic meta-learning
(MAML) framework [18], which is capable of learning generalizable knowledge from source regions, and rapidly
adapting to target regions with a handful of data examples via one or a couple of gradient descent steps. Specifically,
MAML trains the base model in source regions to learn better initialization parameters, which are then used to
adapt to target regions with a few data examples available.

Our main contributions can be summarized as follows:

• We propose a framework MetaTP to tackle the temporal sparsity and spatially unevenly distributed issues
when using road sensing data for traffic prediction. In MetaTP, we use MAML to learn useful information
from multiple source regions and quickly adapt the base model to target regions with limited data examples.
To further enhance spatial-temporal correlations, we also add spatial and temporal memories to capture
the global knowledge patterns.

• We implement a two-layer interpolation network to handle the temporal sparsity issue of irregularly
spaced time series. In the interpolation process, the original information is carried over by univariate
transformations, and the relationship among multiple time series is also captured.

• Extensive experiments have been carried out on two recently collected real-world datasets. We collect one
dataset about traveling time on local road segments by deploying GPS tracking devices to 15 shuttles. The
other dataset on highway traffic flow speed was collected by Caltrans Performance Measurement System
(PeMS). The evaluation results show that our proposed MetaTP achieves the best performance under
various settings. Ablation studies are conducted to demonstrate the effectiveness of major components of
the framework.

The rest of the paper is organized as follows. In Section 2, we go over the related work. In Section 3, we
introduce the system overview, and give out the formal problem definition. In Section 4, we describe MetaTP in
details. In Section 5, we present the evaluations of MetaTP on two real world datasets. Discussion is provided in
Section 6. Finally, we conclude the paper in Section 7.

2 RELATED WORK

In this section, we go over existing traffic prediction and knowledge transfer approaches, and discuss the
comparison between the existing work and our approach.
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2.1 Traffic Prediction

Traffic prediction has a long history in literature [12, 17, 33, 35, 51, 60]. Recent data-driven methods for traffic
prediction can be divided into two categories, statistical methods and machine learning methods. Statistical
methods, which are mainly based on autoregressive moving average (ARIMA) [42], Kalman filter [47], and
Gaussian process [8, 52, 62], focus on modeling temporal dependencies. Conventional machine learning models
such as linear regression [11] and support vector machine [46] have also been used for traffic prediction. [48] uses
matrix decomposition to estimate the travel speed on each road segment. However, these approaches may not be
suitable for modern traffic systems which commonly exhibit complex non-linear spatial and temporal patterns.

Recent work on traffic prediction mainly focuses on exploring spatial-temporal correlations using deep learning
methods. For example, researchers have commonly used a combination of GNN (or GCN) with LSTM to capture
spatial-temporal correlations [4, 13, 36, 56, 63, 65], and further enhanced the model via attention mechanism [16,
20]. The assumptions underlying these methods are that time series samples are evenly spaced across time, so
that they can be fed into an LSTM; and location along with its neighbors are available simultaneously, so that it
can aggregate information from its neighbors through GNN/GCN. However, data samples collected from roving
sensors are often irregularly distributed across time, i.e., not all the variables in a multivariate time series are
available at the same timestamp. LSTM is not directly applicable to this kind of data. Moreover, the frequency
of different locations being sensed cannot be guaranteed, depending on routines of roving sensors. Therefore,
a location may have different neighbors available at different timestamps, making GNN and GCN not directly
applicable. Due to the sparsity and unevenly distributed nature of roving sensors, many approaches [54, 58]
divide a city into disjoint large blocks and perform prediction on block level instead of road segments, since
data in block level is distributed more evenly. However, how to effectively perform fine-grained prediction for
individual road segments is an underexplored task in existing work.
The irregularly data distribution problem and the missing data problem are closely related, while there exist

some differences. The missing data problem generally defines in the scenario that data points should be evenly
recorded along time (e.g., every five minutes), but some values cannot be collected at certain time points, rising the
missingness. The irregular data distribution problem typically occurs in continuous time space, and data points
arrive irregularly without a predefined or łnormalž frequency. Various imputation methods have been proposed
to handle the data missing problem. To name a few, [5] imputes missing values by the linear combination of
statistical estimates, [3] uses bi-directional recurrent neural network (RNN) combined with feature regression for
missing value imputation, [43] explores local and global temporal dynamics to reconstruct missing values, and
[32] employs generative adversarial learning to generate the missed data points in order to fool the discriminator.
These missing value imputation methods are not directly applicable to the irregularly distributed traffic data.
If discretizing an input time series into fixed-length intervals, the irregular distribution problem becomes a
missing data problem, where empty intervals are said to carry missing values. However, this discretization is often
considered as a preprocessing step outside of an imputation method. In contrast, we employ an interpolation
method that takes the raw continuous time data as input, and learns the interpolation points in a end-to-end
fashion, which is more flexible and avoids a separate step for assigning values to discrete time intervals.

2.2 Knowledge Transfer

As some locations may have much less sensor data than others, prediction for these locations relying on their
own data may not be performed well. Transfer learning extracts and transfers previously learned knowledge to
help in learning new tasks. Transfer learning approaches have been developed for sensor-based urban and traffic
prediction such as spatial-temporal cross-domain transfer for cellular traffic prediction [57], semantically related
multimodal feature transfer between cities [49], POI recommendation via user interest drift and transfer [21],
calibration parameters transfer for air quality sensor [9], human mobility knowledge transfer [22] and adversarial
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social sensing transfer in transportation system [61]. Common transfer learning approaches include parameter
sharing [39] and fine-tuning [21] strategies. Despite being able to transfer knowledge from source tasks to target
tasks and mitigate the limited data issue, transfer learning cannot well handle the problem that target tasks only
have a few training data available [18].
Meta-learning learns transferable knowledge from abundant training tasks, and then adapts to new tasks

with a few examples. The learning process focuses on producing a model that is well generalizable to an unseen
task. Regular transfer learning, in contrast, optimizes one or several training tasks and further fine-tunes the
learned model parameters on testing tasks. Intuitively, transfer learning can well optimize training tasks, but
often lacks the ability to generalize well on unseen target tasks with limited data. Domain adaptation [2, 44]
learns to minimize the discrepancy between source and target distributions, so that knowledge learned from
source domain can benefit the target one. Although unsupervised domain adaptation does not require label
information in target domain, it still requires numbers of target data examples to learn the distribution of target
domain, and thus has limited performance when only a few target examples are available.
Model-agnostic meta-learning (MAML) [18] learns initial parameters through training tasks, and quickly

transfers them to a new task using one or a few gradient descent steps. Due to its model agnostic property,
MAML has been applied to various deep learning models to enable knowledge transfer. MetaSense [19] applies
meta-learning to handle the issue of countless individual conditions in human activity and speech recognition.
MetaST [53] builds a spatial-temporal network and adapts it to a new city via meta-learning for traffic prediction.
MetaST assumes that traffic volumes at all spatial locations in a city are recorded at each timestamp, and performs
prediction of these locations jointly at a future timestamp. However, it cannot be directly applied in our scenario
where the collected mobile sensory data is unevenly distributed: only limited locations in a city are monitored at
each timestamp, and for certain locations, the data from spatial neighbors are rarely available. Besides, MetaST
performs predictions on region block level, by dividing the city into rectangle blocks, whereas we try to solve a
more fine-grained problem, i.e., traffic condition prediction on road segment level. Moreover, base prediction
models are different. MetaST assumes that input data are complete and evenly distributed across time and space,
while we develop a base model to handle the practical issue of data sparsity and irregularity by incorporating
interpolation modules. Note that in [36, 37], the authors refer meta-knowledge as node and edge embeddings of a
spatial graph learned from location attributes, which is essentially different from our method that meta-knowledge
is the shared and transferable knowledge.

3 SYSTEM DESIGN

In this section, we first introduce the overview of our system architecture, and define some basic notations used
in the paper. After that, we formally define the traffic prediction problem that the paper is trying to solve.

3.1 System Overview

We build a traffic monitoring system that collects traffic data from vehicles running in the road networks, transfers
knowledge between regions, and performs quick prediction for target regions with a few observed data. The
overall system framework is illustrated in Figure 1. We developed an Android application that continuously
collects traffic information from various regions via smartphone’s sensors equipped in different vehicles, e.g.,
bus and taxi, and on-board smartphones automatically upload the data to our server. In the server, the collected
data pass through a series of preprocessing steps, including data cleaning, GPS map matching, etc. Due to the
penetration rate of roving sensors, traffic data are inevitably sparse and irregular. To solve this problem, we
propose a meta-learning based traffic prediction model, named MetaTP, that contains three main components:
1) interpolate the original data against a set of evenly spaced reference points; 2) capture temporal and spatial
correlations from historical data, and train a prediction model for source regions ; 3) transfer knowledge from
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Fig. 1. Overview of system framework. Traffic data are collected from multiple source regions via sensors equipped in vehicles.

The data are often sparse across time and space. We perform interpolation and knowledge transfer through the proposed

MetaTP method, and obtain optimized parameters for the basic traffic prediction network TP-Net. In the target regions, when

clients request future traffic conditions for certain roads, we can quickly adapt parameters in TP-Net with a few available

data samples to account for the specific conditions, and perform prediction.

source to target regions, and perform prediction of future traffic for target regions. In particular, TP-Net is the
base model that performs interpolation and prediction for each data sample. Through meta-learning, parameters
in TP-Net are trained on a variety of traffic prediction tasks in source regions, and can extract patterns that
are generalizable to other conditions. When traffic data from new regions are available, TP-Net can be quickly
adapted to the new regions with a small amount of training data, and produce the prediction of future traffic
conditions for the interested road segments. The predicted results can be utilized to help travel plan, routine
schedule, traffic volume control, etc.

3.2 Basic Notations

The whole timeline of traffic data in a region can be divided into a series of consecutive but non-overlapping time

points2. A regionV is a geographical area (e.g., town, district or city) and {V} is a set of regions. We define
nodes in a region as road segments, road intersections, and/or other spatial points whose traffic measurements
are of our interest. Trafficmeasurement x𝑛,𝑡 ∈ R

𝐷 for node 𝑛 at time point 𝑡 is a vector that includes 𝐷 types of
historical traffic information, e.g., traffic speeds (for multiple lanes if available), traffic volume, and average number
of passengers per vehicle. For a node 𝑛, we collect amultivariate time series x𝑛 = [x𝑛,1; x𝑛,2; ..., x𝑛,𝑇 ]

⊤ ∈ 𝑅𝑇×𝐷 ,
denoting trafficmeasurements across𝑇 time points. Note that in the rest of the paper, we use time point, timestamp
and time interval interchangeably when it does not cause ambiguity, unless mentioned specifically.

2We use short time interval (e.g., every 5 minutes) as time point since average traffic information within an interval is often more meaningful

than at a single timestamp.
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3.3 Problem Definition

Previous work on traffic prediction often assumes the availability of traffic measurements for all interested nodes
for a certain period of time, and such data can be readily used to train the predictive model. However, as we
have mentioned in the introduction, this setting is not applicable in our problem using roving sensors due to the
unevenly distributed data. In this paper, we focus on solving the problem that predicts future traffic measurements
of any single road segment given its small amount of collected historical data. Thus, the traffic prediction problem
in this paper can be defined as follows,

Given the collected traffic measurements for some nodes in a set of source regions {V𝑠𝑟 }, our goal is to learn a
robust model 𝑓Θ for prediction, so that given a small amount of traffic data from node 𝑛 in a target regionV𝑡𝑔 , we
can quickly predict traffic data at future time points for the node, i.e.,

x̃𝑛,𝑡+1:𝑡+Δ𝑡 ′ = argmax
x𝑛,𝑡+1:𝑡+Δ𝑡′

𝑃 (x𝑛,𝑡+1:𝑡+Δ𝑡 ′ |x𝑛,𝑡−Δ𝑡+1:𝑡 , 𝑓Θ), (1)

where 𝑡 denotes the current timestamp, Δ𝑡 denotes the number of time points to consider the historical temporal
information, x𝑛,𝑡−Δ𝑡+1:𝑡 is node 𝑛’s data from time point 𝑡 −Δ𝑡 + 1 to 𝑡 , Δ𝑡 ′ is the number of future time points, i.e.,
length of prediction, 𝑃 is the conditional probability, and x̃𝑛,𝑡+1:𝑡+Δ𝑡 ′ denotes the predicted values at the following
Δ𝑡 ′ time points.

4 THE PROPOSED METATP MODEL

Fig. 2. Illustration of the proposed base model TP-Net. It includes two interpolation modules, the LSTM-based prediction

module, and spatial and temporal memory networks. The first interpolation module maps the data samples onto one set of

reference points which could have different granularity from the prediction series, whereas the second module maps the

intermediate data to the reference points that are well aligned with prediction time series.

In this section, we provide details of the proposed framework. We first introduce the detailed components
of the base model TP-Net, including generating evenly-distributed time series through interpolation, capturing
global spatial and temporal correlations through memory networks, and performing prediction. After that, we
provide details on parameter updates of the meta-knowledge learner, and give the overall learning algorithm.
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4.1 Basic Prediction Model

The Time Series Prediction Network (TP-Net) is the base model which is shown in Figure 2. It mainly includes
two interpolation modules, one LSTM layer, and spatial and temporal memory networks. The purpose of the
interpolation module is to handle the data sparsity and irregularity issue of the roving sensors. In particular,
the interpolation module fills in the "data gaps" by generating a new signal with regular time interval using
the correlations amongst multiple dimensions of the original time series data. LSTM is then used to capture the
temporal relationship among the interpolated data so as to generate the data representation. The obtained data
representation (hidden state) is passed into the memory networks, which maintain the rich knowledge about the
spatial and temporal information to assist with the time series prediction. The query results from the memories
along with the hidden state are then passed through another interpolation module to map onto another set of
reference points to be aligned with the prediction. We present details of the interpolation module, LSTM-based
prediction module, and memory networks in the following subsections.

4.1.1 Generating Time Series Data with Regular Time Interval. The collected traffic data is often sparse and
irregularly distributed due to limited number of roving sensors and the coverage rate of road segments. Figure 3(a)
gives an example of data series with two dimensions (i.e., 𝐷 = 2), representing traffic volume and speed. To tackle
this problem, we implement an interpolation module inspired by [40] to transform the multivariate, sparse and
irregular input series against a set of regularly distributed time points. Prediction module can be developed on
top of the interpolated series. However, different from [40] which aims to produce a classification label using
the interpolated series, our goal is to predict traffic values of original series at future time points of interest.
Therefore, directly using an interpolation-prediction network as in [40] is infeasible in our problem. Our strategy
is to further employ another interpolation module (whose details can be found in Section 4.1.2) to transform data
from interpolated space to the original space, so that future values at interested time points can be estimated.
Details on constructing an interpolation module are as follows.

The intuition is to decompose each input series into multiple modes with each mode capturing certain type of
information and then recover some modes by leveraging relationships with other input series in a collaborative
way. In particular, the module consists of two layers. The first layer contains three transformations to extract
different types of information from each time series. Then the second layer merges the information extracted
from different time series, which allows the information from each input series to contribute to the interpolation
of other time series. Finally, the interpolation module outputs multiple complete time series with regular time
intervals. It is noteworthy that each output series may preserve different real-world interpretation to the original
input data since it captures only certain aspects of traffic patterns learned from the original data. When we
combine all the output series, their extracted patterns can be helpful for improving the traffic prediction.
Formally, for each of the D dimensions of the input x 3, the interpolation network produces a collection

of interpolants that are defined at 𝐾 reference time points r = [𝑟1, 𝑟2, . . . , 𝑟𝐾 ]. The interpolation module is
illustrated in Figure 3. From the figure, we can see that each time series of the input (e.g., the blue or read line
in Figure 3(a)) goes through a two-layer interpolation network and is transformed into three time series with
reference time points as new timestamps (in Figure 3(b), the number of reference time points, i.e., 𝐾 , is 6). The
detailed implementations are given in the following paragraphs.

In the first layer, we perform three semi-parametric univariate transformations, i.e., intensity function𝝀 ∈ R𝐾×𝐷 ,
low-pass interpolation 𝝈 ∈ R𝐾×𝐷 , and narrow band low-pass interpolation 𝜸 ∈ R𝐾×𝐷 , on each of the D time
series. Here we list the computation process of transformations for time series 𝑑 at the reference time point 𝑟𝑘 as
an example. Firstly, for ∀𝑘 ∈ {1, . . . , 𝐾} and ∀𝑑 ∈ {1, . . . , 𝐷}, the intensity function can be calculated as follows,

𝜆𝑘,𝑑 = 𝐹 (𝑟𝑘 , t𝑑 , 𝛼𝑑 ), (2)

3In Section 4.1.1, for simplicity, we use x to represent x𝑛,𝑡−Δ𝑡+1:𝑡 .
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Fig. 3. Interpolation Module. (a) shows a data sample with two dimensions. (b) depicts the interpolated result. For each

dimension of input, there are three output dimensions, i.e., 𝜒 , 𝜏 and 𝜆. (c) shows the structure of the interpolation module.

where 𝜶 = {𝛼1, . . . , 𝛼𝐷 } ∈ R
𝐷 is a hyperparameter to control the penalty of time differences, t𝑑 ∈ RΔ𝑡 is a list

of time points for time series 𝑑 of the input, and 𝐹 (𝑟, t, 𝛼) =
∑
𝑡 ∈t exp (−𝛼 (𝑟 − 𝑡)

2) indicates how close the time
points of the input are to a reference time point 𝑟 . Input series having closer time points with references yields
larger intensity function. Secondly, the low pass transformation can be represented as,

𝜎𝑘,𝑑 =

exp (−𝛼𝑑 (𝑟𝑘 − t𝑑 )
2)
⊺
x𝑑

𝐹 (𝑟𝑘 , t𝑑 , 𝛼𝑑 )
, (3)

where x𝑑 is the 𝑑-th dimension of the input x. This low pass transformation means that if a value from input is
closer to a certain reference point 𝑟𝑘 , it will have more impact on the interpolated value at 𝑟𝑘 . Finally, the narrow
band low pass interpolation is represented as,

𝛾𝑘,𝑑 =

exp (−𝜅𝛼𝑑 (𝑟𝑘 − t𝑑 )
2)
⊺
x𝑑

𝐹 (𝑟𝑘 , t𝑑 , 𝜅𝛼𝑑 )
, (4)

where 𝜅 > 1 is a hyperparameter. This adds exponential penalty to values in the input that are far away from
reference points so that their impact on the interpolated results will be reduced.
The second interpolation layer integrates information for each reference point from the multivariate series.

First, a cross-dimensional interpolation 𝝌 ∈ R𝐾×𝐷 is calculated as follows,

𝜒𝑘,𝑑 =

∑
𝑑′ 𝜌𝑑,𝑑′𝜆𝑘,𝑑′𝜎𝑘,𝑑′∑

𝑑′ 𝜆𝑘,𝑑′
=

∑
𝑑′ 𝜌𝑑,𝑑′ exp (−𝛼𝑑 (𝑟𝑘 − t𝑑 )

2)
⊺
x𝑑′∑

𝑑′ 𝜆𝑘,𝑑′
, (5)

where 𝝆 ∈ R𝐷×𝐷 is learnable hyperparameter that indicates the correlations among time series. Since we are
dealing with multivariant time series, there exists correlations among different dimensions. Eq. (5) is designed
to capture these cross-dimension relationships. It calculates the weighted sum across all input dimensions on
every output reference point. More specifically, the value of the 𝑘-th reference point of the 𝑑-th dimension of the
output, i.e., 𝜒𝑘,𝑑 , has contributions from the input of all dimensions. The learnable parameter 𝜌 and the radial
basis function controls the relationship. Then, a transient component 𝝉 ∈ R𝐾×𝐷 is defined as the difference
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between the narrow band low-pass interpolation 𝜸 and the cross-dimension interpolation 𝝌 , i.e.,

𝝉 = 𝜸 − 𝝌 . (6)

Finally, we concatenate 𝝀, 𝝌 and 𝝉 to get the interpolated result,

y𝑛,𝑟1:𝑟𝐾 = 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒1 (x𝑛,𝑡−Δ𝑡+1:𝑡 ) = [𝝀; 𝝌 ;𝝉 ], (7)

where y𝑛,𝑟1:𝑟𝐾 ∈ R𝐾×3𝐷 . In this way, we obtain the interpolated data y𝑛,𝑟1:𝑟𝐾 at reference time points for a
multivariate time series x𝑛,𝑡−Δ𝑡+1:𝑡 collected from node 𝑛.

4.1.2 Temporal Prediction. Once obtaining complete data series that cover all the reference time points, we can
feed such data series into temporal analysis tools to conduct the prediction. Recurrent neural network (RNN) is
one of the most widely used methods given its ability to extract non-linear temporal relationships through neural
network layers. Variants of RNN, e.g., long short-termmemory (LSTM) [23], and gated recurrent units (GRUs) [10],
have found a lot of success in the traffic prediction using complete training data series [4, 13, 36, 53, 56, 63].
Without loss of generality, here we use LSTM in our prediction model and all baseline models. An LSTM cell can
be formulated for interpolated time series y𝑛,𝑟1:𝑟𝐾 as follows,

f𝑛,𝑟𝑘 = 𝜎 (W𝑓 y𝑛,𝑟𝑘 + U𝑓 h𝑛,𝑟𝑘−1 + b𝑓 ),

i𝑛,𝑟𝑘 = 𝜎 (W𝑖y𝑛,𝑟𝑘 + U𝑖h𝑛,𝑟𝑘−1 + b𝑖 ),

o𝑛,𝑟𝑘 = 𝜎 (W𝑜y𝑛,𝑟𝑘 + U𝑜h𝑛,𝑟𝑘−1 + b𝑜 ),

c̃𝑛,𝑟𝑘 = tanh(W𝑐y𝑛,𝑟𝑘 + U𝑐h𝑛,𝑟𝑘−1 + b𝑐 ),

c𝑛,𝑟𝑘 = f𝑛,𝑟𝑘 ⊙ c𝑛,𝑟𝑘−1 + i𝑛,𝑟𝑘 ⊙ c̃𝑛,𝑟𝑘 ,

h𝑛,𝑟𝑘 = o𝑛,𝑟𝑘 ⊙ tanh(c𝑛,𝑟𝑘 ),

where f, i, and o are forget, input, and output gates’ activation vectors, respectively, ⊙ stands for Hadamard
product, andW∗, U∗ and b∗ (∗ ∈ {𝑓 , 𝑖, 𝑜, 𝑐}) are learnable parameters. h𝑛,𝑟1:𝑟𝐾 is the temporal representation of
the sample. The forget gate is used to filter the information inherited from the previous time stamp, and the input
gate layer is used to filter the candidate cell state at the current time. The output gate is introduce to future filter
the obtained cell state to generate hidden representation.
As is shown in Figure 2, we pass the representation through a fully connected (FC) network to get the

intermediate prediction,

ŷ𝑛,𝑟𝐾+1:𝑟𝐾+𝐾′ = 𝐹𝐶 (h𝑛,𝑟1 , . . . ,h𝑛,𝑟𝐾 ), (8)

where 𝐾 ′ is the number of reference points of the intermediate prediction.
However, due to the interpolation, the time difference, i.e., interval size, between two consecutive time points

of this intermediate prediction is no longer the same as the original data nor the prediction, since the number of
reference points 𝐾 may not be equal to the input length Δ𝑡 . Therefore, we propose to add another interpolation
module, as shown in Figure 2, to map the intermediate prediction back to the original time points. The reference
points of this interpolation module are the same with time points of the prediction. The module can be represented
as follows,

x′𝑛,𝑡+1:𝑡+Δ𝑡 ′ = 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒2 (ŷ𝑛,𝑟𝐾+1:𝑟𝐾+𝐾′ ). (9)

Since the interpolation module transforms each time series into three series, after the second interpolation, we
use another FC to get the estimated results,

x̃𝑛,𝑡+1:𝑡+Δ𝑡 ′ = 𝐹𝐶 (x
′
𝑛,𝑡+1:𝑡+Δ𝑡 ′). (10)
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We use the mean squared error (MSE) loss function to measure the difference between the estimated value and
the ground truth as follows,

L =

∑

𝑛

∑

𝑡

(x̃𝑛,𝑡+1:𝑡+Δ𝑡 ′ − x𝑛,𝑡+1:𝑡+Δ𝑡 ′)
2. (11)

4.1.3 Spatial and Temporal Memory Networks. Here we aim to further leverage the global spatial and temporal
patterns shared by different regions and time periods to improve the traffic prediction in a collaborative fashion.
For example, traffic flow around a school and a company may have similar daily periodic patterns, while these
patterns are different from traffic flow around a state park. Hence, we propose to use the spatial memory [50, 53] to
aggregate the information from similar locations and use such aggregated information to augment the prediction
model in representing individual locations. Moreover, traffic often shows certain temporal patterns, e.g., morning
rush hour for the same location almost always happens around the similar time period of each day. Therefore, in
addition to the spatial memory, we also implement a temporal memory network. Two memory networks together
can capture more complicated global spatial-temporal relationships.
Although memory network has been used in [53], our memory network module are different in two aspects.

First, [53] performs clustering on locations using historical averaged traffic data of each location, so that data
samples from the same cluster are assigned with the same cluster label when querying the memory. However,
the lookback length of historical data could affect the clustering result, e.g., historical patterns within a week and
a month could be very different, making it hard to decide proper cluster labels. In contrast, we use the external
geographic knowledge of road networks, e.g., number of lanes, and points of interests to generate clusters for
spatial memory, which can be more stable. Second, only clustering locations in [53] may not be sufficient to
capture the global temporal relationship among data samples, because traffic conditions at multiple consecutive
time points within the same time period, e.g., morning rush hour, often share some common characteristics. By
using only location clustering, two samples from the same clustering with different timestamps will be treated
equally when querying the memory. Our utilization of both spatial and temporal memory networks resolves this
issue and enables more complex patterns to be captured.
Spatial Memory. We first split all nodes into 𝑀 clusters using 𝑘-means clustering algorithm based on the
collected node information, e.g., number of lanes, speed limit, and road geography information. Then the spatial
memory can be viewed as a𝑀 ×𝐶 matrix, denoted as M𝑠 , where each row stands for the representation of one
type of summary for historical data, i.e., the memory for the data from one certain spatial cluster; and 𝐶 stands
for the memory dimension to store the information for each type of spatial knowledge.

The output of the second interpolation x′𝑛,𝑡+1:𝑡+Δ𝑡 ′ from Eq. (9) first goes through a fully connected layer, i.e.,

q𝑆𝑛,𝑡 = 𝐹𝐶 (x
′
𝑛,𝑡+1:𝑡+Δ𝑡 ′), (12)

in order to get the information needed to interact with the memory. Then, we use attention mechanism [45] to
query the memory to get spatial knowledge. In other words, we calculate the production between q𝑆𝑛,𝑡 and each
row of the memory, which can be viewed as the similarity between the input and the existing spatial memory
knowledge. Then these similarities are normalized by a softmax function to get the final attention score. The
calculation of the attention score with the𝑚-th memory row is shown as follows,

p𝑆𝑛,𝑡 (𝑚) ≜
exp

(
q𝑆𝑛,𝑡 · M𝑠 (𝑚)

)

∑
𝑚′∈𝑀 exp

(
q𝑆𝑛,𝑡 · M𝑠 (𝑚′)

) , (13)

where · is the dot product operation andM𝑠 (𝑚) is the𝑚-th row in M𝑠 . A higher attention score indicates that
the current sample is more likely to be similar to historical samples that this certain memory row represents.
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Once we have the attention score, we can get the final spatial information that this sample can pull from the
historical data by computing the weighted sum of the attention score with each memory row. This computation
process can be expressed using the following equation,

z𝑆𝑛,𝑡 =

𝑀∑

𝑚=1

p𝑆𝑛,𝑡 (𝑚)M𝑠 (𝑚). (14)

After we have processed the input, we need to update the memory to reflect the new knowledge that is learned
from the sample so as to serve further queries better. In order to update the memory to get an evolving and better
representation, we can calculate the loss for the current query. Specifically, since we have already clustered each
node, the sample from a certain cluster is expected to have stronger correlation with samples from the same
cluster. In other word, the attention score between the sample’s representation with the corresponding memory
row should be the highest. Therefore, we formulate the loss of the spatial memory as follows,

L𝑆
𝑛,𝑡 = − log(p𝑆𝑛,𝑡 ) · S(𝑛), (15)

where S(𝑛) is the one-hot encoding for the clustering that the sample’s node 𝑛 belongs to.
Temporal Memory. The pattern of a sample from the morning rush hour is often more similar to another one
from a rush hour than a sample from the late night. Therefore, we group time points into non-overlapping clusters
so that extra knowledge for new input data can be learned from historical data falling into similar temporal
clusters. When the number of clusters is given, the criteria to divide the timeline can be based on the minmax
strategy, where the difference of inter-cluster is minimized, and the difference of intra-cluster is maximized.
In this paper, for simplicity, we generate the clusters based on the traffic measurements in different period of
each day, i.e., morning rush hour, midday, afternoon rush hour, and evening. We will leave the study of optimal
temporal grouping in future work, including how to determine the number of groups. For temporal memory
networkM𝑡 ∈ R

𝑀′×𝐶′
, the attention score p𝑇𝑛,𝑡 , the pulled information from temporal memory z𝑇𝑛,𝑡 , and the loss

for temporal memory L𝑇𝑛,𝑡 can be obtained in the similar way with the spatial memory, so that we omit the
detailed computation process.

Concatenate x′𝑛,𝑡+1:𝑡+Δ𝑡 ′ with the pulled information from both memories to get the enhanced representation,

[x′𝑛,𝑡+1:𝑡+Δ𝑡 ′ ; z
𝑆
𝑛,𝑡 ; z

𝑇
𝑛,𝑡 ], (16)

which is used to generate the final prediction by Eq. (10). And the overall loss function can be finalized as follows,

L𝑎 = L +
∑

𝑛

∑

𝑡

(
𝜂1L

𝑆
𝑛,𝑡 + 𝜂2L

𝑇
𝑛,𝑡

)
, (17)

where L is the prediction loss defined in Eq. (11), and 𝜂1 and 𝜂2 are two hyperparameters that control the loss
weights of spatial and temporal memory, respectively.

4.2 Meta-Knowledge Learner

Despite the capability of handling irregularly distributed time series of TP-Net, its performance is restricted
with limited available data in target regions. Since different regions could have quite different sensor coverage,
directly applying the learned model from source regions to target regions with a fine-tune step, cannot robustly
capture the diverse spatial and temporal characteristics of each region, and may cause unstable results or even
the risk of negative transfer. To enable robust knowledge transfer, we train the parameters of TP-Net via model-
agnostic meta-learning (MAML) [18]. The underlying idea of MAML is that there exist initial parameters that are
transferable among tasks, so that the initial parameters can be adapted to a new task quickly with a few data, and
produce robust generalization performance.
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Fig. 4. Schematic diagram of the knowledge transfer module. In the meta-knowledge transferring process, abundant traffic

prediction tasks from source regions are used to optimize initial parameters Θ of TP-Net. Each task T𝑖 from source regions

contains two disjoint sets of data examples, i.e., training and test sets, denoted as S-Train and S-Test. S-Train set is used to

update the initial parameters Θ to task-dependent parameters Θ′
T𝑖
, which simulates adapting parameters to the specific

condition of a task; and S-Test is used to evaluate the performance of Θ′
T𝑖
on test set, and update initial parameters Θ based

on the acquired loss on S-Test. In target regions, with a few observed traffic data samples, the optimized parameters Θ of

TP-Net can be quickly adapted to the new condition, and provide accurate prediction results for the given traffic data.

4.2.1 Parameter Updates. For simplicity, we useΘ to denote all parameters from TP-Net except memory networks,
and represent TP-Net as 𝑓Θ. For each source region, we randomly sample 𝑁𝑡 tasks {T1, . . . ,T𝑁𝑡 }. Each task T𝑖
contains two disjoint sets of data samples, i.e., training set D𝑡𝑟

T𝑖
(denoted as S-Train in Figure 4), and test set D𝑡𝑒

T𝑖
(denoted as S-Test in Figure 4). We ensure the training set and test set have no overlapping data. Training sets are
used for learning a task-specific parameter Θ′

T𝑖
for each task T𝑖 through a few gradient descent updates, and test

sets are used for evaluating the generalization of the task-specific parameters and updating initial parameters
Θ. We use L𝑠 to denote the prediction loss for source regions, and it is calculated by Eq. (11). The task-specific
parameters Θ′

T𝑖
can be obtained using D𝑡𝑟

T𝑖
with gradient descent as,

Θ
′
T𝑖
= Θ − 𝛽∇ΘL

𝑡𝑟
𝑠,T𝑖

(Θ,D𝑡𝑟
T𝑖
), (18)

where 𝛽 is a predefined learning rate. Eq. (18) shows one step of gradient descent, and in practice, we use several
gradient descent steps (e.g., 5 steps) to update from Θ to Θ

′
T𝑖
. This process of adapting and updating parameters

for a specific task is illustrated as an inner loop arrow in Figure 4.
With task-specific parameters Θ′

T𝑖
, we train the model parameters Θ by optimizing the performance of 𝑓Θ′

T𝑖

on test set D𝑡𝑒
T𝑖
. Additionally, memory networks M𝑠 and M𝑡 are updated together with Θ in the meta update

process, instead of task-specific adaptation, since memory networks capture global spatial-temporal information
and are shared across tasks. The meta-objective function is defined as,

min
Θ,M𝑠 ,M𝑡

∑

T𝑖

L𝑡𝑒
𝑠,T𝑖

(Θ′
T𝑖
,D𝑡𝑒

T𝑖
) +

∑

𝑛

∑

𝑡

(𝜂1L
𝑆
𝑛,𝑡 + 𝜂2L

𝑇
𝑛,𝑡 ), (19)

where Θ′
T𝑖
is obtained by Eq. (18), and the second term denotes the memory losses of test set D𝑡𝑒

T𝑖
in T𝑖 . During

meta-optimization, the gradient is computed with respect to Θ,M𝑠 andM𝑡 , while the test loss L
𝑡𝑒
𝑠,T𝑖

is computed
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with respect to task-specific parameters Θ′
T𝑖
and evaluated with data D𝑡𝑒

T𝑖
. We illustrate this update step using the

meta update arrow in Figure 4.

4.2.2 Target Adaptation. After TP-Net is trained using source regions, it can be adapted to various target regions
with a few collected data in response to traffic prediction requests. Suppose that we have a few historical traffic
measurements from 𝑖-th node in a target region, and the client wants to know future traffic condition of this
node, which forms a task J𝑖 , we can calculate the model parameters for J𝑖 as,

Θ
′
J𝑖

= Θ − 𝛽∇ΘL
𝑡𝑟
𝑡,J𝑖

(Θ,D𝑡𝑟
J𝑖
), (20)

where D𝑡𝑟
J𝑖
is the training set of the 𝑖-th node in the target region, and it contains a few historical time series;

L𝑡,J𝑖 is the loss calculated using D𝑡𝑟
J𝑖
. For a time series x𝑖,𝑡−Δ𝑡+1:𝑡 in testing set D𝑡𝑒

J𝑖
, we can apply TP-Net with

parameters Θ′
J𝑖

to obtain estimated future traffic measurements 𝑥𝑖,𝑡 :𝑡+Δ𝑡 ′ as,

x̃𝑖,𝑡 :𝑡+Δ𝑡 ′ = 𝑓Θ′
J𝑖
(x𝑖,𝑡−Δ𝑡+1:𝑡 ). (21)

Prediction requests from other nodes in target regions can be fulfilled through Eq. (20) and Eq. (21) similarly as
for node 𝑖 .
Through the meta-learning process, TP-Net has experienced various tasks from source regions via training

steps in Section 4.2.1, and it can be fast and effectively adapted to the target condition in Section 4.2.2 with the
learned meta-knowledge. The overall framework of MetaTP is shown in Algorithm 1.

Algorithm 1: Overall Algorithm of MetaTP

Input: Dataset; Stepsize of optimizers: 𝛽 ; Weights of memories’ loss: 𝜂1, 𝜂2
Result: Predicted traffic information at future timestamps
Randomly initialize parameters Θ in TP-Net, spatial memory M𝑠 , and temporal memory M𝑡

Generate spatial and temporal clusters for source nodes and time points respectively
while not done do

Randomly sample a set of regions
Randomly sample a batch of nodes from each selected region
for each node do

Sample D𝑡𝑟
T𝑖
and D𝑡𝑒

T𝑖

Calculate the loss of D𝑡𝑟
T𝑖
by Eq. (17)

Update Θ′
T𝑖
using gradient descent by Eq. (18)

Evaluate loss
∑

T𝑖 L𝑠,T𝑖 (Θ
′
T𝑖
,D𝑡𝑒

T𝑖
) on D𝑡𝑒

T𝑖

end

Update Θ,M𝑠 and M𝑡 by Eq. (19)
end

/*Target Adaptation*/
for each node in target regions do

Sample D𝑡𝑟
J𝑖

and D𝑡𝑒
J𝑖

Adapt Θ to Θ
′
J𝑖

on D𝑡𝑟
J𝑖

with a few gradient descent steps by Eq. (20)

Get the prediction for D𝑡𝑒
J𝑖

based on Θ
′
J𝑖

by Eq. (21).

end
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5 EVALUATION

In this section, we evaluate the performance of MetaTP on two traffic prediction tasks, i.e., one is for local travel
time prediction and the other is for highway traffic speed prediction.

5.1 Experimental Settings

In this section, we first introduce the measurement metrics, and then briefly describe the baseline methods to
compare with. At the end, we give out the choices of hyperparameters and experimental details.
Metrics. We use the mean absolute error (MAE) and the rooted mean square error (RMSE) to evaluate the
performance,

MAE =

1

𝑁

𝑁∑

𝑖=1

|𝑦𝑖 − 𝑦𝑖 |, RMSE =

√√√
1

𝑁

𝑁∑

𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (22)

where 𝑁 is the number of instances, 𝑦𝑖 is the prediction result and 𝑦𝑖 is the ground truth.
Baseline methods used in this paper can be grouped into two categories, i.e., non-transfer baselines and transfer

based baselines.
Non-transfer Baselines:

• Historical Average (HA): Since traffic data of the near future has close relationship with the past timestamps,
following [20, 27], we calculate the average traffic information for each time series, and use it as the predicted
value for future timestamps.

• Vector Autoregression (VAR): VAR is a traditional multivariate time series analysis model. It considers
temporal relationships and dependencies among variates.

• Linear Regression (LR): LR is a commonly used method for time series predictive analysis. Here a variable is
considered as missing at a timestamp, if other variables are available. We first fill in the łmissingž values with
the forward filling method, i.e., use the last observed value to replace the missing. For each time series, we use
past data points to fit an LR model, and then conduct prediction.

• Gaussian Processes (GP) [52]: GP based regression model is a kernel-based machine learning method that
can be used to solve the traffic prediction problem.

Transfer Baselines:

• TransFT: Transfer learning with fine-tuning uses LSTM with forward filling to train on the source data. For
the target tasks, it uses a few training samples in target domain to fine-tune the model, and then applies the
tuned model on test data in target.

• MAML-M: It is based on MAML [18], which aims to learn a better initialization for target tasks from multiple
source tasks. The base model is LSTM with missing values filled with mean of observed values.

• MAML-F: It is also based on MAML. The difference between MAML-F and MAML-M is that we use forward
filling on LSTM.

• MetaST [53]: MetaST builds a spatial-temporal network that combines CNN and LSTM, and adapts it to a new
city via meta-learning. In [53], each city is divided into non-overlapping rectangle blocks and the prediction is
done on the block level. Therefore, it uses CNN to capture spatial relationships in the Euclidean space and
aggregate predictions in rectangular blocks. Whereas in this paper, we deal with traffic prediction on the road
segment level, where the road network forms non-Euclidean and irregular graphs, which is not suitable to
apply CNN. Thus, we remove the CNN in the implementation. Missing values are replaced with forward filling.

• MetaTP-Lite: To illustrate the effectiveness of memory networks, we also implement a simplified version of
the proposed framework without adding memory networks. Temporal missingness (i.e., sparsity) is handled
via interpolation proposed in Section 4.1.1.
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Implementation Details: All transfer based baselines are implemented using PyTorch 1.154 [38] with Python
3.7. MSE is chosen as the loss function. Adam optimizer [25] is used as the optimization method with gradient
clipping. Experiments are tested with Nvidia Titan X Pascal. Different choices of hidden size in the range from 16
to 1024 has been tried out. Best performance is achieved at 128 which is used for all methods that utilize the
LSTM module. The size of spatial and temporal attention memories are set to be 8.

5.2 Travel Time Prediction on Stampede Dataset

Fig. 5. Demonstration of the data collection system of Stampede. From left to right, the sub-figures are Stampede routes, a

deployed smartphone in the overhead bin of a Stampede shuttle, a screenshot of the data collection application, and an

Apache server that stores and processes collected data.

5.2.1 Stampede Dataset. In order to study the traffic prediction in local road network, we have deployed GPS
tracking devices (i.e., Android smartphones with our developed GPS tracking application) on 15 shuttles named
Stampede, which run among different university campuses and between campuses and supermarkets. We got in
touch with the local company that operates Stampede shuttles via university transportation authorization on
the potential usage of the collected data (e.g., travel time estimation, and driving behavior monitoring) and got
permission to deploy the sensors. For each shuttle station, the scheduled service interval between shuttles during
daytime of weekdays is as few as 5 minutes, while during night or weekends it can be as long as 60 minutes. The
sampling rate of GPS is about 1Hz. The collected GPS data are uploaded to our Apache web server whenever the
smartphone is connected to WiFi. There are WiFi access points across the campus that are tested to be capable
to upload all collected data. The Stampede routines, an example of the deployment of a tracking device in the
overhead bin of the Stampede shuttle, the screen shot of the Android application, and the Apache web server are
depicted in Figure 5.

In this evaluation, we use Stampede data collected from February 1, 2020 to February 29, 2020. The routes have
been split into 14 road segments. Each road segment (i.e., node) contains the running time information for both
directions. The timeline is divided into 15 minutes intervals. There are totally 24,018 valid records. From our
observation, the running times for each road segment during late night (after 9pm) and early morning (before
6am) are very stable during that period, so we choose data collected between 6am and 9pm to run experiments.
There are 21,305 records within this time period. We split data into training and testing by ratio 8:2. Road network
information, including the number of lanes per direction, number of stop signs, number of traffic lights, speed
limits, and the GPS location of the center point of each road segment, has been used to cluster road segments
into 4 different groups, based on the 𝑘-means clustering algorithm. Temporal clustering is done by cutting each
day into 8 non-overlapping clusters since nearby time points usually have closer relationship. More information,

4https://pytorch.org/
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however, can be added, like weekday, weekends, holiday, etc, to get a possible better clustering result which we
leave for future work to study.

(a) Travel Time (b) Missing Rate

Fig. 6. Average travel time and missing rate for Stampede dataset on a selected road segment in different time of the day.

Figure 6a and Figure 6b show the average travel time and the average missing rate, during each interval for
one selected road segment, respectively. Here, the missing rate is defined as, for one input data, the ratio between
the number of timestamps without traffic data and the data length. Note that our input data is in continuous time
space. The missing rate here is used to quantify how sparsity the collected data is. We denote the average missing
rate in time series by 𝑝 . From Figure 6a, we can see that the two time series of travel time corresponding to two
directions have evidently correlation. Both directions have relative higher travel time during the morning rush
hour and the evening rush hour. The missing rate reflects the issue of data sparsity. Figure 6b shows that missing
rates of consecutive time intervals can be different because not all shuttles are equipped with GPS tracking
devices. This indicates the unevenly-distributed nature of roving sensory data. As this road is on the routine
of a round trip between two campuses and it takes about half an hour for one way trip, for three consecutive
intervals, the first and third intervals have closer missing rates. We want to mention that the missing rate here
does not impact the accuracy of the collected data. The GPS receiver on smartphones we use can achieve an
accuracy of a few meters.

5.2.2 Performance w.r.t. Missing Rate 𝑝 . Since the temporal sparsity situation may vary from one case to another,
in this section, we study how well MetaTP performs with different missing rate 𝑝 . For 𝑝’s range from 10% to 90%,
we run all methods on Stampede dataset under settings that the length of each source data is 2 hours (i.e., Δ𝑡=8),
and prediction length is 45 minutes (i.e., Δ𝑡 ′=3). Results are shown in Table 1. From the table we can see that for
each method, with 𝑝 increasing, the performance generally gets worse. MetaTP outperforms all the baselines for
all choices of 𝑝 . The reason is that MetaTP can alleviate the impact of temporal sparsity not only by learning the
inner relationships among different time points, but also by learning the cross-dimensional correlations among
time series. The performance of MetaTP keeps strong even when 𝑝 becomes very high. MetaTP-Lite performs
slightly worse than MetaTP which illustrates that the memory networks can help enrich the data representation
with learned spatial and temporal knowledge from historical data. But it still outperforms MAML-M and MAML-F,
which indicates the effectiveness of the interpolation network.

HA works well since the traffic usually won’t change much in a short period of time. But due to the lack
of more sophisticated analysis, the performance gap between HA and MetaTP enlarges when the prediction
length 𝑝 increases. When 𝑝 gets larger, the performance of VAR deteriorates quickly, especially in terms of RMSE.
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Table 1. Performance on Stampede dataset w.r.t. missing rate and prediction length.

Missing
rate

Methods
10% 30% 50% 70% 90%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 30.2963 36.2805 33.4543 45.8264 35.1960 48.4916 35.8237 49.3912 41.6951 57.1164
VAR 30.0668 36.2997 33.8191 46.5974 34.6367 47.0917 35.3368 47.3535 42.1719 58.4321
LR 37.5307 47.5624 47.5060 63.7812 50.8413 67.5694 51.2780 69.9089 41.7913 57.4964
GP 30.0348 35.9824 33.8330 46.2711 36.0585 49.8693 36.7091 50.0090 41.7061 57.0703

MAML-M 31.4843 38.0773 32.0669 43.7039 33.1243 44.3655 33.7721 45.4455 33.8768 46.6542
MAML-F 31.3826 37.8950 32.1126 41.8370 32.8024 43.8126 33.2252 44.1050 33.3589 45.4443
TransFT 36.0781 45.1084 37.8919 50.2874 38.6726 51.0883 38.7871 52.2503 39.4617 52.4747
MetaST 31.6591 37.1050 32.4367 41.5279 32.9693 42.1080 33.0773 43.4723 33.1580 44.5011

MetaTP-Lite 31.1476 37.3674 31.7718 40.5694 31.7011 42.0451 33.1686 43.8655 33.4906 45.3833
MetaTP 29.5126 35.1047 31.2094 40.0013 31.2905 40.6207 31.9758 41.3637 32.3755 43.3635

Prediction
length

Methods
15 min 30 min 45 min 60 min 75 min

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 33.6614 45.9012 34.3882 46.4842 34.7708 47.3231 34.9184 49.9459 35.8997 51.9505
VAR 32.9690 43.2544 33.4326 43.9375 34.5750 47.1259 34.8333 47.7916 35.2945 48.5648
LR 45.7119 63.5798 48.7300 66.8309 51.0449 67.9682 53.0381 68.8936 55.7797 72.1186
GP 34.4776 45.9649 35.3581 47.4044 35.2073 48.0301 36.0585 49.8693 36.0489 51.0505

MAML-M 32.0624 41.6025 32.8542 43.8750 33.1003 44.4224 33.2814 44.6440 32.2793 44.8432
MAML-F 31.2020 40.4384 31.9142 42.4919 32.1179 43.1012 32.5263 43.3987 33.0371 44.5992
TransFT 34.9432 47.4424 37.0193 49.4063 38.2631 49.5776 38.5452 50.7517 39.0538 51.8123
MetaST 31.1465 39.5452 31.6510 39.7491 31.5582 41.6709 32.3768 42.2470 32.9341 42.7864

MetaTP-Lite 29.7784 37.9748 31.2016 39.5857 31.6315 41.4493 32.0123 41.7320 32.1685 42.1605
MetaTP 29.1061 35.6843 30.6595 38.9224 30.7202 39.1585 30.8582 40.8466 31.5213 41.3707

One possible reason is that when 𝑝 is too high, it becomes harder for VAR to capture the accurate periodical
information from the source data.
TransFT doesn’t perform very well. Meta-learning based approaches, i.e., MAML-M, MAML-F, and MetaST,

achieve better performances than TransFT since they are able to learn better generalizable parameters, and
adapt effectively to target regions. Among them, MetaST usually achieves better performance than MAML-F,
which illustrates the effectiveness of the memory module of MetaST. But because MetaST lacks the interpolation
network and the temporal memory, it is outperformed by our proposed method. MAML-F generally performs
better than MAML-M. This indicates that the forward filling could be a better choice than filling with mean value,
since the traffic data at each timestamp tend to be closer to the value of previous timestamp than to the mean.

5.2.3 Performance w.r.t. Prediction Length Δ𝑡 ′. In real-world applications, we often want to know the prediction
results for further ahead in addition to the next time point. Therefore, in this section, we run all models for tasks
with Δ𝑡 ′ from 1 to 5 (i.e., from 15 to 75 minutes). Except for the prediction length, other conditions are kept the
same, i.e., Δ𝑡 is 8 and 𝑝 is fixed to be 60%. The results have been given in Table 1. From the table, we can see
that for each individual method, the performance worsens (i.e., RMSE increases) when the prediction length gets
longer. This is due to the fact that the traffic of nearer time points could be more related to the current time,
while traffic for further timestamps tends to be impacted by more factors and get less related to current time.
In other words, the further the time points are, the more uncertainties there are, and usually, the harder it is to
predict. As a result, the prediction performances drop as Δ𝑡 ′ increases. MetaTP yields the best results under all
choices of prediction lengths.
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(a) Δ𝑡=10, Δ𝑡 ′=3, 𝑝=30% (b) Δ𝑡=10, Δ𝑡 ′=3, 𝑝=60% (c) Δ𝑡=5, Δ𝑡 ′=3, 𝑝=60%

Fig. 7. Performance w.r.t. the number of reference points on Stampede dataset.

5.2.4 Number of Reference Points 𝐾 . Interpolation plays an important role in solving the data sparsity issue, and
its effectiveness may be impacted by the number of reference points, i.e., 𝐾 , that the input data is transformed
onto. Thus, here we study the model performance with respect to the number of reference points𝐾 . A good choice
of 𝐾 may not only be related to Δ𝑡 , but also have something to do with 𝑝 . Therefore, we show the relationships
between performance and 𝐾 under three different settings in Figure 7a, Figure 7b and Figure 7c. Δ𝑡 , Δ𝑡 ′ and 𝑝 for
Figure 7a are 10, 3 and 30%, respectively. And these three parameters for Figure 7b and Figure 7c are 10, 3, 60%
and 5, 3, 60%, respectively. From these figures, we can see that under all 3 settings, the optimal choices of 𝐾 are
around Δ𝑡 , and the performance gets worse when 𝐾 gets too small or too large. The possible reason is that too
few reference points may not be enough to hold all important information of the input nor the cross time series
relationships. On the other hand, if there are too many reference points, then during the interpolation process,
useless information, and even harmful noises could be introduced so that to generate a bad interpolated result
which eventually decreases the model performance.

One might notice that the "best" performances from these figures are not exactly the same as those in Table 1.
The reason is that during the calculation of these figures, to compete fairly, all settings are kept the same except
for 𝐾 . Therefore, results in these figures may not be the global optimal for the same setting of data sequence
length, prediction length and missing rate. While in making the table, for each setting, we try to find its optimal
result by trying out different combinations of other parameters.

(a) Δ𝑡=8, Δ𝑡 ′=2, 𝑝=60% (b) Δ𝑡=8, Δ𝑡 ′=3, 𝑝=60%

Fig. 8. Performance w.r.t. the number of reference points of intermediate prediction on Stampede dataset.

5.2.5 Number of Reference Points of Intermediate Prediction 𝐾 ′. As we mentioned in Section 4.1.2, we obtain the
intermediate prediction from hidden states of the LSTM layer, before we use the second interpolation module to
map data back onto the same time points as the prediction sequence. Thus, the number of reference points of
the intermediate prediction, i.e., 𝐾 ′, may impact the final performance. Therefore, we study the performances
of different 𝐾 ′s under different prediction lengths, and depict the results in Figure 8. Beside of the prediction
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length, other settings are the same, i.e., Δ𝑡 is 8 and 𝑝 is 60%. From these two figures, we can see that the best
performances are both achieved when 𝐾 ′ is the same as Δ𝑡 ′. When the 𝐾 ′ decreases or increases, the performance
gets worse. Similar to the study of 𝐾 in Section 5.2.4, the choice of 𝐾 ′ may also be impacted by the choices of Δ𝑡
and 𝑝 which we leave to future work.

5.2.6 Memory Networks. Memory networks are used in this paper to capture global spatial and temporal
correlations. We have already shown in Section 5.2.2 and Section 5.2.3 that the memory modules indeed have a
positive impact on the overall performance. In this section, we study the memory networks from two aspects, i.e.,
impacts of loss weights (i.e., 𝜂1 and 𝜂2) and the memory size (i.e., 𝐶 and 𝐶 ′).
Loss Weights of Memory Modules. Figure 9a shows the changes of MAE and RMSE with different 𝜂1, whereas
Figure 9b is for 𝜂2. When studying 𝜂1, 𝜂2 is fixed to be 0.1, and vice versa. From the figures we can see that the
performances fluctuate in a relatively small range for different loss weights which indicates that the model is not
very sensitive to them.

(a) Spatial (b) Temporal (c) Spatial (d) Temporal

Fig. 9. Performance w.r.t. loss weights and dimensions of memory networks on Stampede dataset.

Memory Size. Usually the dimension of memory could affect the effectiveness of memory modules. Therefore, in
this section, we study the pattern that the performance may followwhen the dimension of memory modules varies.
Figure 9c and Figure 9d show changes of performance for different spatial and temporal memory dimensions,
respectively. For both spatial and temporal, performances get worse when the dimension is too small because a
too small memory network cannot hold enough information to provide help for queries. The same trend also holds
for too large dimension which might because the memory has trouble picking up the more useful information
to store, and trying saving too much information causes overfitting. The optimal dimensions for spatial and
temporal are different which might because the temporal relationship is easier to capture than the spatial since it
is harder to cluster nodes due to the difficulty in extracting useful features for clustering.

5.3 Traffic Speed Prediction on PeMS Dataset

In this section, we carry out experiments on PeMS dataset [7], which has been widely used in traffic prediction
works [20, 28, 55]. These traffic data of California highway are collected by the Caltrans PerformanceMeasurement
System (PeMS) in real time every 30 seconds, and are aggregated into several intervals, e.g., 5 minutes and 30
minutes. There are two reasons that we use PeMS dataset. First, in previous section, we study the performance of
MetaTP on local road network. But the traffic pattern of freeway can be different from local roads. Therefore,
by testing with PeMS data, we can demonstrate the effectiveness of MetaTP working in different environments.
Second, PeMS dataset does not have missingness, so that the prediction performance can be evaluated against
more ground truths. We collect PeMS traffic speed data of 5 minutes interval of district 04, 06, 07, 08, and 11, from
January 1, 2020 to January 31, 2020. The locations of stations from district 04 and 07 are depicted in Figure 10.
Data from district 11 are used for testing, and others are used for training.
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Fig. 10. Locations of stations from PeMS dataset. Fig. 11. Traffic speed of one station from PeMS dataset.

Figure 11 plots the average speed of three lanes from station 716088 of district 07. Since there are too many
intervals to display in a single figure, for better visualization, here we only show values from the first interval of
every hour. On the highway, lane 1, 2 and 3 are numbered from left to right (when facing towards the traffic
moving direction). From the figure, we can observe the relationship among different lanes and the overall speed
change along the time. The interval level average speed of lane 1 is the fastest, whereas lane 3 is usually the
slowest. Morning rush hour and evening rush hour can be identified clearly from the figure. And the speed change
between adjacent intervals is often very smooth (since we only plot the first interval of each hour, the change
between adjacent intervals from the figure is larger than the real change between two consecutive intervals). In
Section 5.3, unless otherwise stated, the default values of Δ𝑡 , Δ𝑡 ′ and 𝑝 are 24, 3, and 60%, respectively.

5.3.1 Performance Evaluation. Here we conduct experiments with different 𝑝 and Δ𝑡 ′ on PeMS dataset. Results
are listed in Table 2.
Missing Rate 𝑝. We can see that MetaTP outperforms all baselines. Compared with Stampede dataset, TransFT
cannot perform well. The reason might be that the input sequence is longer here, and spatial-temporal patterns
between source regions and target regions are quite different, making it hard to effectively transfer useful
knowledge. As for LR, it achieve relative better performance. The reasons might be that the longer input sequence
helps it capture the trend of a time series better, and also the traffic condition on highway changes more smoothly
when compared with that on the local road network.
Prediction Length Δ𝑡 ′. From Table 2, we can see that MetaTP achieves the best performances for all different
Δ𝑡 ′. When Δ𝑡 ′ gets larger, the performances of all methods decrease, and the performance gaps between MetaTP
and baselines generally increase. The reason might be that the prediction lengths used here are longer, which
brings more challenging. The global spatial and temporal relationships that are captured by the proposed memory
networks help to improve the performance.

5.3.2 Study of Number of Reference Points. The same with Stampede dataset, here, we study the performances
for different choices of number of reference points, including 𝐾 and 𝐾 ′.
Number of Reference Points 𝐾 . Figure 12 shows changes of performances with respect to 𝐾 under different
settings. It can be found from these figures that the best performances are usually achieved when 𝐾 is set to be
around Δ𝑡 .
Number of Reference Points of Intermediate Prediction 𝐾 ′. The results are shown in Figure 13. From the
figures we can see that under both conditions, the best performances are achieved when 𝐾 ′ is around Δ𝑡 ′.

5.3.3 Memory. In this section, we study the memory networks from following aspects, i.e., loss weights (i.e., 𝜂1
and 𝜂2), memory size and the visualization of attention scores.
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Table 2. Performances on PeMS dataset w.r.t. missing rate and prediction length.

Missing
rate

Methods
10% 30% 50% 70% 90%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 2.4320 5.7797 2.5244 6.0528 2.5266 6.0950 2.5864 6.2448 2.6292 6.3822
VAR 2.2450 5.2744 2.3758 5.6922 2.4723 5.8684 2.5371 6.1239 2.5887 6.2795
LR 2.0682 4.5854 2.1429 4.8816 2.2052 5.1181 2.3590 5.5698 2.5378 6.0892
GP 2.0368 4.3313 2.0864 4.4502 2.1773 4.7764 2.2682 5.0214 2.4769 5.7732

MAML-M 3.5993 5.4107 3.7242 5.5487 3.9235 5.8092 4.0172 5.8650 4.0172 6.1695
MAML-F 3.5304 5.3156 3.7134 5.3817 3.7662 5.4796 3.8500 5.7177 3.9918 5.9263
TransFT 5.2691 10.5968 5.3002 10.6504 5.3104 10.6551 5.4074 10.8821 5.8046 11.1510
MetaST 2.5531 3.7252 2.6252 4.0849 2.8410 4.5373 2.9125 4.6630 2.9419 4.8231

MetaTP-Lite 1.6901 2.7388 1.7997 2.8095 1.8685 2.9627 1.9358 3.0009 2.2529 3.6267
MetaTP 1.5598 2.2708 1.7019 2.4066 1.7250 2.6042 1.8760 2.8196 1.9768 3.1845

Prediction
length

Methods
20 min 30 min 40 min 50 min 60 min

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 2.5430 6.0576 2.6553 6.3217 2.7747 6.5897 2.9349 7.0460 2.9649 7.0893
VAR 2.4654 5.8718 2.5006 5.9150 2.5401 6.0179 2.8235 6.5376 2.9071 6.8914
LR 2.2818 5.1900 2.5313 5.7968 2.8043 6.5529 2.9353 6.7161 3.1390 7.4470
GP 2.3157 5.1192 2.5479 5.5674 2.7390 5.9644 2.9347 6.4975 3.0817 6.7906

MAML-M 3.7182 5.7448 3.6928 5.8580 3.7881 5.9852 4.2919 6.3766 4.4497 6.6952
MAML-F 3.7067 5.7574 3.7526 5.8509 3.9975 5.9717 4.0131 6.2837 4.1382 6.5153
TransFT 5.3191 10.6516 5.4996 10.8005 5.5090 11.0346 5.9529 11.2635 6.0363 12.4115
MetaST 2.8434 4.4496 3.0947 4.4871 3.1020 5.0799 3.2218 5.4403 3.8200 6.1732

MetaTP-Lite 1.8606 2.8379 2.0235 3.0443 2.4293 3.7075 2.5954 3.8050 2.6444 4.2053
MetaTP 1.6067 2.6045 1.9199 2.7277 1.9359 2.9075 2.2798 3.3700 2.3429 3.6073

(a) Δ𝑡=24, Δ𝑡 ′=3, 𝑝=20% (b) Δ𝑡=24, Δ𝑡 ′=3, 𝑝=60% (c) Δ𝑡=12, Δ𝑡 ′=3, 𝑝=60%

Fig. 12. Performance w.r.t. the number of reference points on PeMS dataset.

Loss Ratio of Memory Modules. Figure 14a and 14b show performances of MetaTP on PeMS dataset with
different choices of 𝜂1 and 𝜂2, respectively. The best performance for 𝜂1 is achieved at around 0.2, whereas for 𝜂2,
it is 0.01.
Memory Dimension. Figure 14c and 14d show the performances with different spatial and temporal memory
dimensions, respectively. Similar to Stampede, the best performances are achieved when the spatial dimension is
16 and the temporal dimension is 8.
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(a) Δ𝑡=24, Δ𝑡 ′=6, 𝑝=60% (b) Δ𝑡=24, Δ𝑡 ′=9, 𝑝=60%

Fig. 13. Performance w.r.t. the number of reference points of intermediate prediction on PeMS dataset.

(a) Spatial (b) Temporal (c) Spatial (d) Temporal

Fig. 14. Performance w.r.t. loss ratios and dimensions of memory networks on PeMS dataset.

Visualization of Memory. In order to investigate the knowledge patterns captured by memory networks, we
randomly select data examples from each spatial cluster and calculate their attention scores based on Eq. (13).
The results for spatial and temporal memories are shown in Figure 15a and Figure 15b, respectively. The 𝑦-axis is
the id of cluster and the 𝑥-axis is the memory slot number. The color in the images indicates the relationships
between each example and each memory slot. The darker the color, the stronger the relationship. From figures
we can see that examples from different clusters tend to have different attention weights across memory slots.
This indicates that memories have captured certain patterns for different spatial and temporal clusters, and they
help to get a better and enhanced data representation.

(a) Spatial (b) Temporal

Fig. 15. Visualization of attention scores on PeMS dataset.
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6 DISCUSSION

In this section, we give discussions on three aspects. We first discuss the lessons learned from the data collection
process using our deployed system. Then we talk about some of the remaining challenges in the studied problem
and the potential future work. In the end, we detail our contributions to the Ubicomp community.

6.1 Lesson Learned

Real-world data acquisition system needs to be sufficiently robust in order for large scale deployment. In our
case, we wish to eliminate the need of human intervention as much as possible after the GPS tracking device
has been installed in the Stampede shuttle. Since these shuttles are operated by a third party company, and the
smartphones are placed in the locked overhead bin, it is impractical to frequently visit the third party company
to check the running status of each device. There might be various reasons for the failure of data upload from
devices, e.g., the shuttle is out of service, the application crashes, the phone has a dead battery due to freezing
weather or overheating. In order to make the system more robust, we root the smartphone so that whenever it
connects to power (indicating the shuttle engine starts), the data collection application launches automatically.
And if the phone is in power-off mode, the connection to power will trigger the boot-up of the smartphone, and
then launch the application.
In addition to GPS data, we also collect other sensory data using the same application, including data from

accelerometer and gyroscope. In this case, we can obtain accurate running information of the shuttles by making
use of the other sensory data along with the priori knowledge about Stampede routes, even if the GPS signals
were impacted by urban canyon effect. During our data collection process, the GPS signal was in overall good
quality since there are no tall buildings in the operating area of Stampede shuttles. So during the experiments,
we can extract the accurate travel time on each road segments from the collected data without using data from
other sensors.

6.2 Future Work

Our current model predicts traffic conditions for each target road segment only using the historical data from the
same road segment. This is based on the consideration that the spatial correlations are less helpful for sparse and
irregular input time series data since many neighbors may have very few amount of collected data. However, we
can use our interpolation algorithm to generate complete time series data for all the road segments, which enables
the use of more advanced spatial-temporal predictive models, such as graph neural network [15, 31, 55, 58, 59], to
further improve the prediction accuracy. What’s more, we can infer the traffic conditions for road segments that
have no historical data, by using the data from their neighbors and utilizing their relationships with neighbors,
e.g., traffic cascading [14, 29, 30]. This iteration process can keep going until all road segments in the target
regions are covered. Depending on prediction results, we can choose to deploy more roving sensors to locations
whose performances cannot keep up with others, and deploy fewer sensors to areas that are less impacted by a
lower frequency of data collection.
Another aspect we can try is to use mixed sources of data. Currently, due to the different characteristics of

local roads and freeway, we use the data from local road networks to predict local traffic, and use freeway data to
make prediction for freeway. Since there are a large amount of collected data from freeway, and certain traffic
patterns could be shared between local and freeway, we can try to use the freeway data to help improve the
prediction performance of local roads.

6.3 Contributions to the Community

Solving the traffic prediction task could help on building the intelligent transportation system. In particular, it
could improve the delivery efficiency and the accuracy of delivery time estimation so as to improve customer
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satisfaction with shipping services, including online grocery shopping, e.g., Instacart, and food delivery service,
e.g., DoorDash and UberEats. Since it is not always possible for each company to collect enough data for each
target location to train a separate model directly and effectively, our proposed model can be used to effectively
make traffic prediction by using only a small amount of data samples.

In addition to traffic prediction, the proposed model can be easily adopted to solve prediction problems in other
domains involving spatio-temporal data, e.g., water quality forecasting [53], forecasting for gas price, weather,
and air quality [34], and even forecasting for the arriving time of flights [26]. Because the spatial and temporal
sparsity challenge may exist in these applications as well.
We will make the collected Stampede dataset public to facilitate the research in this area. The whole dataset

includes GPS data from shuttles running in the local road network with a high sampling rate for a duration of
over two years. We hope that the dataset would help researchers to gain more insights of fine-grained traffic
patterns of local road networks.

7 CONCLUSION

In this paper, we propose a meta-learning based framework to perform traffic prediction on individual road
segments. The nature of roving sensor brings new challenges: collected data is temporally sparse and unevenly
distributed across regions. To overcome the challenges, we employ an interpolation network to handle irregularly-
spaced time series and enable temporal correlations to be effectively captured; we employ meta-learning to
transfer knowledge from source to target regions with limited available data via fast adaptation. Spatial and
temporal memory networks are developed to further capture global patterns among regions and timestamps.
This framework can also be applied to other related problems, such as air quality and weather forecasting, to
overcome the issues of irregularly distributed time series and limited available data.
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