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ABSTRACT
Annotated data samples in real-world applications are often lim-
ited. Meta-learning, which utilizes prior knowledge learned from
related tasks and generalizes to new tasks of limited supervised ex-
perience, is an effective approach for few-shot learning. However,
standard meta-learning with globally shared knowledge cannot
handle the task heterogeneity problem well, i.e., tasks lie in dif-
ferent distributions. Recent advances have explored several ways
to trigger task-dependent initial parameters or metrics, in order
to customize task-specific information. These approaches learn
task contextual information from data, but ignore external domain
knowledge that can help in the learning process. In this paper,
we propose a task-adaptive network (TAdaNet) that makes use
of a domain-knowledge graph to enrich data representations and
provide task-specific customization. Specifically, we learn a task
embedding that characterizes task relationships and tailors task-
specific parameters, resulting in a task-adaptive metric space for
classification. Experimental results on a few-shot image classifica-
tion problem show the effectiveness of the proposed method. We
also apply it on a real-world disease classification problem, and
show promising results for clinical decision support.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies→ Neural networks.
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1 INTRODUCTION
With the availability of big data and the growing computational
power, machine learning has experienced tremendous growth in
past decades. However, in many application scenarios, the num-
ber of annotated data can be extremely limited, where labeling
data is typically very expensive and even unrealistic. For example,
many healthcare tasks such as rare disease detection, where the
prevalence of certain diseases in population is very low, suffer from
limited training data. To tackle the data scarcity issue, few-shot
learning has attracted great interest of the community.

Meta-learning, which is to acquire meta-knowledge across many
tasks, has become an important and effective approach for few-shot
learning in recent years. It assumes that some internal representa-
tions are transferable among tasks, so that the model learned from
training tasks can be adapted to new tasks and produce good gen-
eralization performance. Most of existing meta-learning methods
[6, 15, 28, 29, 31] rely on a globally shared meta-optimizer, initial pa-
rameter, or metric space across tasks. In the training process, a batch
of tasks are sampled from a distribution, and transferable knowl-
edge is learned in the form of optimization strategies, initialization,
and embedding functions. However, a task distribution can be com-
plex and has far apart mode, making it difficult to find a global
condition that can be adapted quickly to desired parameters for all
tasks. For example, if an intelligent system learns how to detect
Alzheimer’s disease, one can imagine that it is easier to be modu-
lated to detect Parkinson’s disease than other less related diseases
such as heart failure. Therefore, it is desired that a meta-learner can
accommodate tasks sampled from complex task distributions and
customize parameters according to task relationships. Recent work
[13, 14, 24, 32, 36, 39] has incorporated task contextual information
to trigger task-specific initialization and embedding. Specifically,
[36] proposes to cluster tasks based on task similarity, and promotes
knowledge customization to different clusters. These models rely
on the training data itself to learn task contextual information.

In many application scenarios, domain knowledge exhibits in the
form of graphs, which can provide useful information to learn data
representations and characterize task relationships. For example, in
the healthcare domain, there are well organized disease ontologies
such as the International Classification of Diseases1(ICD) and Clin-
ical Classifications Software2(CCS), which provide the hierarchical
relationships of diseases; and ImageNet is organized according to

1http://www.icd9data.com
2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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the WordNet hierarchy3. This kind of graphs are often known in
advance or can be extracted from a knowledge base. Nodes (e.g.,
diseases or words) sharing the same parent nodes are likely to be
associated with similar data examples (e.g., patients or images),
allowing knowledge transfer between them. The graph-enriched in-
formation helps representations learning especially when the data
is limited in the setting of few-shot learning. Since a task contains
several classes that are represented as nodes in the graph, each task
can be regarded as a subset of nodes. Thus tasks are related through
the paths that link their nodes. A task is considered more similar to
another task sharing some nodes in the graph, than the one that has
disjoint classes with it. Therefore, it is likely that the information
in the domain-knowledge graph can enrich data representations
and help in identifying task relationships.

In this paper, to incorporate such domain knowledge, we pro-
pose a task-adaptive meta learning framework named TAdaNet that
allows message passing across nodes of a domain-knowledge graph
and promotes meta knowledge customization for different tasks.
Our model learns task embeddings by organizing task knowledge
from historical tasks in a memory network, and produces task-
aware parameter adjustment to customize the learner parameters
conditioned on the task embeddings. The learner of each task pro-
duces a prototype per class for the classification task. Specifically,
we use the class relationships on a given graph to learn prototypes
by combining the neighborhood information through an attention
mechanism. The data representations can be enriched by aggregat-
ing the information from their neighbors, and task relationships
are captured by the paths linking classes on the graph. Our main
contributions can be summarized as follows:
• We propose a novel meta-learning framework that allows
message passing through external knowledge graphs to en-
rich data representations, and extracts task relationships
reflected in the graph, in order to customize task-aware meta-
learners for new tasks.
• We demonstrate that, comparing with the state-of-the-art ap-
proaches, our method effectively utilizes the graph-enriched
information of ImageNet, and tailors the learned structure
knowledge to the metric space per task for classification.
• We demonstrate that the proposed method can be effectively
applied to a real-world application, i.e., disease prediction,
using a large healthcare dataset by incorporating the domain
knowledge of disease ontology. The results are promising
for solving the data scarcity problem in healthcare decision
support.

The paper is organized as follows. We first review the recent
progress in meta-learning and its applications in related work, and
then introduce the details of our proposed framework. In the exper-
iments, we validate the proposed method on an extracted dataset
from ImageNet, and extend the method to an application of disease
prediction on a real-world healthcare dataset.

2 RELATEDWORK
Meta-learning learns new tasks quickly with a few training exam-
ples. There are mainly three lines of approaches on meta-learning:
(1) black-box amortized methods design meta-learners to quickly
3https://wordnet.princeton.edu

optimize the model parameters [1, 22, 23, 25]; (2) gradient-based
methods learn an optimized initialization across tasks, allowing
quick adaptation to new tasks by a one or more steps of gradient
descent [6, 8, 15]; and (3) non-parametric learners aim to learn
an appropriate distance metric between query and support exam-
ples [2, 7, 13, 28, 29, 31]. Meanwhile, there are a few hybrid work
from the above categories [27, 33]. However, the tasks may be di-
verse and the generalization across the entire task distribution may
be unuseful or even harmful to unrelated tasks.

Handling task heterogeneity in meta-learning has attracted sub-
stantial interests in recent advances. A handful of works [13, 14, 24,
32, 39] try to leverage task-specific information to tailor the shared
knowledge for each task. [24] learns task-dependent metric space
by scaling and shifting the feature extractors conditioned on the
task sample set. [14] generates functional weights for the target
prediction network of each task. [39] linearly projects sample em-
beddings to a task adaptive space, and calculates the distance metric
in the projection space. [13] enables meta-learner to learn on each
layer’s activation space, so that task-specific learners perform gra-
dient descent on their corresponding subspaces. [32] modulates the
meta-learned prior parameters according to the mode of each task
sampled from a multimodal task distribution. These approaches
have shown the benefits of customizing task-specific representa-
tions compared to the globally shared parameters. However, they
ignore the relationships between tasks, which may limit the model
expressiveness and impair knowledge generalization. Considering
task-relatedness, [36] proposes to cluster tasks into several states
through hierarchical clustering, and trigger the initialization of
each task through a cluster-specific parameter gate; and [37] con-
structs meta-knowledge graph to extract cross-task relations. The
two methods learn task relationship from the training data, but
ignore the inherent relationship expressed by external knowledge.

Our work is also related to graph neural network [30], message
passing [16, 18] and graph meta-learning [16, 17, 38]. Specifically,
[17] learns a global embedding network for all tasks to update the
prototypes, and it covers the classification of any classes from the
graph. In contrast, we perform classifications on some target classes
from the graph, and utilize the graph structure to relate tasks and
customize the metric space for different tasks.

Owing to the ability of learning with only a small amount of
data, meta-learning has been applied to deal with the data scarcity
problem in various fields, such as natural language processing [9],
computer vision [11], recommendation systems [5, 12] and spatial-
temporal prediction [35]. In the field of healthcare, [40] applied
gradient-based meta-learning to predict the risk of target diseases
with limited data samples from longitudinal patient health records,
and has shown promising results of meta-learning in healthcare
compared with training on limited samples directly, transfer learn-
ing and multi-task learning. Previous approaches [4, 20] on health-
care representation learning show that incorporating domain knowl-
edge into the predictive model enriches data representations. Our
proposed meta-learning method can be naturally applied into dis-
ease prediction tasks with limited training data, and improve pre-
diction performance using well-organized disease ontology (e.g.,
CCS and ICD).
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3 METHODOLOGY
In this section, we first introduce the data structure and some basic
notations, and then introduce details of the proposed framework
on learning task-adaptive metric space with domain-knowledge
graph for few shot classification.

3.1 Problem Setup
In the training phase of meta-learning, we are given a set of tasks
{T1,T2,T3, ...} sampled from the task distribution 𝑝 (T ). In each
task T𝑖 ∼ 𝑝 (T ), we have a set of support examples D𝑡𝑟

𝑖
and query

examples D𝑡𝑒
𝑖
. The support set D𝑡𝑟

𝑖
= {x𝑖, 𝑗 , 𝑦𝑖, 𝑗 }𝑛

𝑡𝑟

𝑗=1 contains 𝑁
classes randomly selected from the meta dataset and 𝐾 examples of
each class, where 𝑛𝑡𝑟 = 𝑁 × 𝐾 . The query set D𝑡𝑒

𝑖
= {x′

𝑖, 𝑗
, 𝑦′
𝑖, 𝑗
}𝑛𝑡𝑒
𝑗=1

contains unseen examples from the classes inD𝑡𝑟
𝑖
, and the labels are

to be learned. The goal is to learn a meta-learner that can produce a
predictive model for each task. The optimal parameters are obtained
by minimizing the expected empirical loss on training tasks. At the
test time, the same strategy of task sampling is applied on meta-test
data, which contains a disjoint set of target classes. The meta-test
data is used to evaluate model generalization on unseen tasks.

In our problem, a graph G(Y, E) indicating the relationship of
classes is available. In the graph, each node 𝑦 ∈ Y denotes a class
and each directed edge 𝑦𝑖 → 𝑦 𝑗 ∈ E connects a parent class 𝑦𝑖
to its child class 𝑦 𝑗 on the graph. We assume that there are two
types of nodes in G: the leaf nodes Y𝑡 are the target fine-grained
classes; the ancestor nodes Y𝑐 form the coarse classes. The fine-
grained classes are the target classes which we are interested in
for classification, and the coarse classes are expected to provide
additional information that can help the few-shot learning process.
For example, in the graph of disease ontology, "Parkinson’s disease"
has two children "Paralysis agitans" and "Secondary parkinsonism",
while its ancestor classes are "Hereditary and degenerative nervous
system conditions" and "Diseases of nervous system and sense
organs". Following the settings of few-shot learning, we draw a task
T𝑖 ∼ 𝑝 (T ) which contains classes in the leaf nodes as the target
classes, and extract the ancestors for the target classes, which forms
a subset of nodes in G.

3.2 The Proposed Framework
The overall learning framework is shown in Figure 1. Our goal is
to facilitate the learning process by leveraging the information on
hierarchy graph and transferable knowledge from related tasks.
The proposed framework contains two key modules: task context
embedding and customized target prediction. During the meta-
training phase, we first map the support and query examples to
an embedding space through a feature extractor 𝑓\ . Prototypes of
the few-shot classes are calculated in the metric space and updated
by propagating the message from ancestor nodes in the hierar-
chy graph. A task context encoder network 𝑔𝜑 encodes the task
representations through aggregating the related information from
a task-context memory M. Meanwhile, the task representation
is restricted to not deviate much from the one obtained by the
graph-enriched prototypes. With the enhanced task representation,
the initial parameter \ in the feature extractor is customized to
a task-specific one \𝑖 by utilizing a set of modulating functions

𝐹𝑐 . Few-shot classification is performed on the customized met-
ric space by comparing the distances between the query example
representation and prototypes of support classes.

In the following part of this section, we first introduce a graph-
based method to learn class prototypes which enable message pass-
ing across classes, and then propose a task embedding method to
learn the task relationship. Finally, parameters of the classification
network are adapted to each task conditioning on its embedding.

3.2.1 Graph-based Prototype Learning. A prototype can be re-
garded as the representation of a certain class. Following [28], we
obtain the initial prototype c𝑘,0

𝑖
of class 𝑘 in task T𝑖 by calculating

the mean vector of sample embeddings in the class:

c𝑘,0
𝑖

=
1

𝑛
𝑡𝑟,𝑘
𝑖

∑
(x𝑖,𝑗 ,𝑦𝑖,𝑗 ) ∈D𝑡𝑟,𝑘

𝑖

𝑓\ (x𝑖, 𝑗 ), (1)

where D𝑡𝑟,𝑘
𝑖

is the support example set of the 𝑘-th class in task T𝑖 ,
𝑛
𝑡𝑟,𝑘
𝑖

is the number of examples in the set, x𝑖, 𝑗 is the 𝑗-th sample, and
𝑓\ (·) is the embedding function with learnable parameters \ . Eq. (1)
calculates the prototype using limited samples in a class, which
may be inaccurate and sensitive to outliers due to data scarcity of
each class.

Therefore, we utilize the hierarchy graph to align related classes,
in order to learn better class prototypes. In the hierarchy graph,
the target few-shot classes come from the leaf nodes, while the
coarse nodes from the ancestors indicate the distance between two
target classes. For example, if two few-shot classes share some
ancestor nodes in the hierarchy graph G, they are likely to have
some common characteristics, so that their prototypes should be
similar. To incorporate the class relatedness information from graph
G, inspired by [17, 30], we update the prototype in the (𝑙 + 1)-th
iteration for each target class in the leaves, using its ancestors’
embeddings in the last iteration as below,

c𝑘,𝑙+1
𝑖

=
∑

𝑝∈N𝑘∪𝑘
𝑎𝑡𝑡 (c𝑝,𝑙

𝑖
, c𝑘,𝑙
𝑖
)c𝑝,𝑙
𝑖
, (2)

where 𝑎𝑡𝑡 (𝑎, 𝑏) = exp(−𝑑 (𝑎,𝑏))∑
𝑝′ exp(−𝑑 (𝑎,𝑏))

is the attention score, 𝑑 (𝑎, 𝑏) is
the distance between 𝑎 and 𝑏, andN𝑘 denotes the neighbors of class
𝑘 in G. c𝑝

𝑖
contains the prototypes of a target class and its neighbors

which are the parent nodes for leaves. We use cosine distance in
our experiments. After getting the initial class embedding c𝑘,0

𝑖
in

Eq. (1), we update it by aggregating the neighbor embeddings using
Eq. (2). The updated prototype of class 𝑘 in task T𝑖 is,

c𝑘𝑖 = (1 − _)c𝑘,0
𝑖
+ _c𝑘,𝐿

𝑖
, (3)

where the weight _ ∈ [0, 1] is a hyperparameter to adjust the
weight between information from the examples in class 𝑘 and its
ancestor classes, and 𝐿 is the number of propagation iterations. We
empirically find that the performance is insensitive to 𝐿, so we set
𝐿 to 1 in the experiments for simplicity. Similarly, the prototype of
a coarse node is calculated by aggregating the information from its
ancestors, descendants and itself via graph attention.

3.2.2 Task Representation Learning. Metric-based few-shot learn-
ing methods [7, 28, 29, 31] typically learn a task-invariant metric
for all the tasks. This may limit the model’s expressive ability since

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

1791



𝑔𝜑

Task encoder

Task representation

𝑴
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 𝜏𝑖

Task embedding

𝐷𝑖
𝑡𝑟

𝐷𝑖
𝑡𝑒

Prototypes

𝑓𝜃

𝑓𝜃𝑖

Hierarchy graph

Target prediction

Adapt
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Prototypes

Metric

𝜃𝑖 = 𝜃 ∘ 𝜂𝑖

Figure 1: The overall framework. For each task T𝑖 , the support and query data samples are first embedded to a metric space
through network 𝑓\ (·), and then the task encoder 𝑔𝜑 (·) extracts the task representation which is enhanced through memory
network. A set ofmodulate networks 𝐹𝑐 (·) generate the gate [ for each parameter \ conditioned on the enhanced task represen-
tations. The customized parameter \𝑖 is used to obtain the prototype embeddings for input classes, and perform classification
for query examples. In the process of learning prototypes, information from the hierarchy graph is passed to enhance the
prototype representations.

the optimal metric may vary across different tasks. To improve the
model expressiveness, we introduce parameter customization to
make feature extractor behaviour task-adaptive. The task-specific
parameters are conditioned on task representations. Learning a task
representation is expected to account for the following properties:
enough distinctions between different tasks, sufficient similarities
between related tasks, and insensitivity to the number and order of
samples in a certain task.

We use an auxiliary network 𝑔𝜑 (·) to learn task representations.
Given an 𝑁 -way 𝐾-shot task T𝑖 with support examples D𝑡𝑟

𝑖
=

(x𝑖, 𝑗 , 𝑦𝑖, 𝑗 ), we obtain the task representation by,

𝜏𝑖 =
1
𝑁𝐾

𝑁𝐾∑
𝑗=1

𝑔𝜑 (x𝑖, 𝑗 ). (4)

The task representation 𝜏𝑖 is obtained by aggregating the example
embeddings in the task with a mean pooling operation, e.g.,𝑔𝜑 (x𝑖, 𝑗 )
is the representation of the 𝑗-th example.

We leverage the underlying knowledge obtained from historical
tasks to enhance the task representation, in order to better char-
acterize task relationships. To extract knowledge from historical
learning process, we construct a parameterized memory matrix
M ∈ R𝑆×𝑑 , where 𝑆 denotes the predefined knowledge types and
𝑑 is the dimension of prototype embeddings. We utilize the knowl-
edge patterns of task relations stored inM via attentionmechanism.
The attention score between prototype c𝑘

𝑖
of task 𝑖 and the stored

memory patterns is calculated by,

𝛼𝑘𝑠 =
exp(c𝑘

𝑖
· M(𝑠))∑𝑆

𝑠′=1 exp(c
𝑘
𝑖
· M(𝑠 ′))

, (5)

whereM(𝑠) denotes the 𝑠-th pattern in the memory, and · is the dot-
product operation. 𝛼𝑘𝑠 measures the importance of each knowledge
type inM to the 𝑘-th prototype in current task. The information
passing from the memory is aggregated by,

z𝑘𝑖 =

𝑆∑
𝑠=1

𝛼𝑘𝑠M(𝑠), (6)

where z𝑘
𝑖
is the information-propagated prototype. Therefore, the

enhanced task representation 𝜏𝑖 can be obtained by concatenating
the task embedding and the memory updated one as,

𝜏𝑖 = [𝜏𝑖 ;𝜏 ′𝑖 ], (7)

where 𝜏 ′
𝑖
is the mean vector of the updated prototypes of {z𝑘

𝑖
}𝐾
𝑘=1.

Now the task representation 𝜏𝑖 is learned based on example em-
beddings within the task and historical tasks. Since the graph G
provides class connections in the graph and tasks can be related
via classes, we expect to leverage the graph information to better
evaluate the task relatedness and allow knowledge shared across
tasks by message passing through the graph. To incorporate the
class connections in G, we minimize the difference between the
prototypes obtained by 𝑔𝜑 (·) and Eq. (3) as below:

L𝑐 (T𝑖 ) =
𝐾∑
𝑘=1

c𝑘𝑖 − 1

𝑛
𝑡𝑟,𝑘
𝑖

∑
x𝑖,𝑗 ∈D𝑡𝑟,𝑘

𝑖

𝑔𝜑 (x𝑖, 𝑗 )
2
𝐹
. (8)

In this way, information from hierarchy graph is incorporated into
task representation, so that task representations can reflect the class
relatedness. If two tasks have similar class prototypes, they should
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have close task representations. With the learned task representa-
tion, we then perform task-specific customization for the prediction
model of each task.

3.2.3 Task-specific Prediction. Previous gradient-basedmethod [36]
designed a cluster-specific parameter gate and allows similar tasks
to be initialized by similar meta-parameters and then adapts the
customized parameters to new tasks. Inspired by this, we learn a
series of task-specific parameter gates:

[
𝑗
𝑖
= 𝐹

𝑗
𝑐 (𝜏𝑖 ),∀𝑗 ∈ 1, ..., |\ |, (9)

to enforce the task-specific property on the embedding network,
where 𝐹 𝑗𝑐 is the 𝑗-th fully-connected network, and |\ | is the number
of parameters in \ . Note that [𝑖 = {[ 𝑗𝑖 }

|\ |
𝑗=1 has the same dimension

as the feature embedding parameter \ , so that each element in [𝑖
controls the weight of neurons to be adapted to each task. With the
parameter gates, the globally transferable knowledge is adapted to
the task-specific embedding parameter \𝑖 = \ ◦ [𝑖 , where ◦ is the
element-wise multiplication. Therefore, similar task embeddings
will trigger similar parameter gates, resulting in similar model
parameters and allowing more information to be shared, while
different tasks are controlled to share less information.

With the customized feature extractor 𝑓\𝑖 (·), we embed the sup-
port and query examples in T𝑖 to obtain the data representations
conditioned on the task. We can then obtain the task-adaptive pro-
totype c̃𝑘

𝑖
for class 𝑘 following the same procedure as Section 3.2.1

with \ substituted by \𝑖 : first calculating the prototype per class
by calculating the mean of supports to obtain the initial value, and
then aggregating the information propagated through the ancestor
nodes in G. The prototype c̃𝑘

𝑖
is used to assign the predicted class

label for a query data point x′
𝑖, 𝑗

based on a softmax function over
distances between prototypes and the query embedding:

𝑝 (𝑦′𝑖, 𝑗 = 𝑘 |x
′
𝑖, 𝑗 ) =

exp(−𝑑 (𝑓\𝑖 (x′𝑖, 𝑗 ), c̃
𝑘
𝑖
))∑

𝑘′ exp(−𝑑 (𝑓\𝑖 (x′𝑖, 𝑗 ), c̃
𝑘′
𝑖
))
, (10)

where the distance function 𝑑 (·) is Euclidean distance. The clas-
sification process is to minimize the cross-entropy loss function
as,

L𝑝 (T𝑖 ) = −
𝐾∑
𝑘=1

∑
x′
𝑖,𝑗
∈D𝑡𝑒,𝑘

𝑖

log𝑝 (𝑦′𝑖, 𝑗 = 𝑘 |x
′
𝑖, 𝑗 ). (11)

The overall loss is a weighted sum of the classification loss L𝑝
and task encoder loss L𝑐 , i.e., L𝑝 + 𝛼L𝑐 , where 𝛼 is a hyperparam-
eter. The training procedure is shown in Algorithm 1.

4 EXPERIMENTS
We conduct experiments on two datasets, including an image dataset
extracted from tieredImageNet [26] and a medical dataset extracted
from MIMIC4. We compare the proposed method with state-of-the-
art meta-learning approaches on the 𝑁 -way 𝐾-shot classification
problem, and present the quantitative and qualitative experimental
results.

4https://mimic.physionet.org/

Algorithm 1 TAdaNet for meta-learning

Require: task distribution 𝑝 (T ); hierarchy graph G; meta
training data.
1: Randomly initialize \ , 𝜑 andM
2: for number of training iterations do
3: Sample a batch of tasks from 𝑝 (T ) and sample D𝑡𝑟

𝑖
and

D𝑡𝑒
𝑖

for each task T𝑖
4: for all T𝑖 do
5: Calculate the prototype c𝑘

𝑖
for each support class 𝑘 by

Eq. (1), Eq. (2) and Eq. (3)
6: Compute task representation 𝜏𝑖 using Eq. (4), Eq. (5),

Eq. (6) and Eq. (7)
7: Compute the task encoder loss L𝑐 (T𝑖 ) by Eq. (8)
8: Compute [ 𝑗

𝑖
by Eq. (9) and update parameters \𝑖 ← [𝑖\

9: Compute the customized prototype c̃𝑘
𝑖
by 𝑓\𝑖 (·), and the

classification loss L𝑝 (T𝑖 ) by Eq. (11)
10: end for
11: Update \ , 𝜑 andM by minimizing L𝑝 + 𝛼L𝑐 .
12: end for

4.1 Experimental Setup
In this section, we first describe the data preprocessing steps on the
two databases to extract the data specifically designed for graph-
based meta-learning, and then introduce the state-of-the-art meta-
learning approaches which are used as baselines. Finally, we provide
the implementation details of the experiments.

4.1.1 Datasets. We carry out the experiments on two datasets
separately and utilize their knowledge graphs.
Image-graphWe extract a subset from tieredImageNet [26], which
is a subset of ILSVRC0-12 and has a total of 608 classes (named
leaf categories) and 779,165 images. Each non-leaf category (named
coarse node) contains 10 to 30 classes. A whole directed acyclic
graph is firstly built from root node to leaf nodes based onWordNet.
Starting from each class whose distance from root node is 4, we build
a subgraph that contains all its descendants. Then for each subgraph,
we randomly select 80% of its leaf classes as training and the rest 20%
as testing, and divide the subgraph into two graphs, i.e., train-graph
that only contains training leaf classes and their ancestors, and test-
graph which only contains testing leaf classes and their ancestors.
For each leaf class in train/test-graph, we randomly sample 20
images belonging to that category. Then for each coarse class, we
sample 20 images from each of its descendants that are leaf classes.
Each image will be picked up at most once. To ensure that there
is enough difference between different subgraphs, we remove leaf
classes that are too close to other subgraphs. Here, the distance
between a leaf node and a subgraph is defined as the minimum
hops between the node and all leaves in the subgraph.
MIMICMultiparameter Intelligent Monitoring in Intensive Care
(MIMIC-III) is a large publicly available dataset for medical anal-
ysis. We select 446 diagnosis codes which serve as the labels for
disease prediction, and ensure that different target disease cohorts
have no overlapped patients. For each patient, we extract two types
of features: time series variables and discrete variables. The time
series are informative physiological variables suggested in [10, 34]
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such as heart rate, systolic blood pressure, oxygen saturation, and
respiratory rate. We use the records of 31 variables during the first
48 hours after patients’ admission to the ICU. Therefore, the time
series record of each patient can be viewed as a matrix, where the
horizontal dimension corresponds to timestamps and the vertical
dimension is physiological variables. The discrete variables include
3,103 ICD-9 codes with the 446 selected disease codes being re-
moved. The discrete variables are represented as a binary vector,
where each element indicates the absence or occurrence of a vari-
able. We use ICD ontology as the external graph which provides
category relationship among diseases. Detailed statistics of two
datasets are shown in Table 1.

Table 1: Data statistics of two datasets.

Dataset training testing

#classes #examples #classes #examples

Image-graph
coarse 388 55,800 190 13,580
target 441 8,820 113 2,260
total 829 64,620 303 15,840

MIMIC
coarse 155 11,099 74 4,731
target 171 11,428 46 2,902
total 326 22,527 120 7,651

4.1.2 Baseline Approaches. We compare the proposed method with
two types of baselines, including gradient-based meta-learning
methods and metric-based methods. For the gradient-based meth-
ods, we compare with MAML [6], MMAML [32] and HSML [36].
Among the methods, MAML learns globally shared initial param-
eters across tasks and then adapt the parameters to new tasks
through a few gradient steps, while MMAML and HSML learn
task-specific initialization to customize the learning process. The
metric-based methods to be compared include MatchingNet [31],
ProtoNet [28], RelationNet [29] and PPN [16]. These methods mea-
sure distances between query and support examples using a shared
metric for all tasks. Among the methods, MatchingNet produces
a weighted 𝑘 nearest neighbor classifier; ProtoNet computes dis-
tances between a query point and prototypes; RelationNet learns a
nonlinear comparison on top of metric space; and PPN learns the
propagated prototypes by accumulating the level-wise classification
loss on each level of classes sampled from the graph.

4.1.3 Implementation Details. We divide the target classes for few-
shot classification into training and testing sets in an 8:2 ratio. For
each target class, we retrieve its ancestor nodes from the hierarchy
graph to form the coarse classes. The target classes in the training
and testing sets are disjoint, while we allow them to share ancestors
according to the hierarchy. During the training phase, we sample 𝑁
target classes from the leaf nodes to form a task, and retrieve their
corresponding coarse nodes. For evaluation purpose, we randomly
sample 600 tasks from the meta-test dataset.

For the image data, we adopt the widely used backbone CNN
architecture as in previous work [6, 28, 31]. It has 4 convolutional
layers, each with 64 filters of kernel size 3×3, followed by batch nor-
malization, ReLU activation and 2×2 max-pooling. For metric-based
methods, 𝑓\ (·) is used to extract features from the input images,

and the learned feature representations are used for distance mea-
surement between query and support images. For gradient-based
methods, we add a fully-connected layer on top of the feature ex-
tractor to produce the probabilities as a prediction for each data
example. For the proposed method, the task encoder 𝑔𝜑 (·) contains
two 3×3 convolutional layers and each with 64 filters. The modula-
tion network 𝐹𝑐 (·) is a set of one-layer projections with sigmoid
activation to customize each parameter in 𝑓\ (·). We empirically
find that more layers of 𝐹𝑐 (·) do not make significant improvement.

For the medical data, the network 𝑓\ (·) contains a CNN-based
sequence learning structure for time series and a multilayer per-
ceptron (MLP) for discrete variables. We adopt the one-directional
convolution operations in risk prediction [3, 19, 40] to capture pat-
terns across the temporal dimension, followed by max pooling and
a fully connected layer. We use a one-layer CNN network with
64 filters for time series and a two-layer MLP for discrete data,
and combine the learned vector representations through a fully-
connected layer. The task encoder 𝑔𝜑 (·) has the same structure as
𝑓\ (·) to learn example embeddings and we use mean pooling to
obtain the task embedding. The modulation network 𝐹𝑐 (·) is a set
of one-layer projections.

4.2 Experimental Results
4.2.1 Performance Evaluation. To evaluate the model’s generaliza-
tion performance, tasks are generated using two sampling strate-
gies: random sampling and subgraph sampling. In random sampling,
the few-shot classes are randomly selected from the leaf nodes of
the whole graph. In subgraph sampling, we split the graph into
several subgraphs without overlapping target classes, and each
task is sampled from nodes within one subgraph. In this setting,
tasks are constructed heterogenously, and tasks sampled from the
same subgraph can be considered more similar to each other, while
tasks from different subgraphs are considered dissimilar. Subgraph
sampling corresponds to an application scenario which requires
discriminating fine-grained classes (e.g., Parkinson’s, Alzheimer’s,
and Huntington’s disease) from the same category (e.g., neurode-
generative diseases).

We conduct experiments on 𝑁 -way 𝐾-shot few-shot classifica-
tion problems. Results under two sampling strategies on Image-
graph and MIMIC datasets are shown in Table 2 and Table 3 respec-
tively. In Table 2, we compare the proposed method with baseline
approaches of the few-shot image classification problem on 5-way
1-shot, 5-way 5-shot and 10 way 1-shot. We set _ in Eq. (3) to 0.5.
Our method significantly outperforms baseline approaches, espe-
cially on 1-shot classification. This is due to the fact that 1-shot
learning is more difficult than 5-shot learning for lack of training
data, so that the information from ancestors of the graph can be
more helpful to learn representations for the target classes.

We observe that MMAML usually achieves higher accuracy than
MAML, especially under subgraph sampling. The reason is that
MMAML augments MAML with the capability to identify the mode
of tasks sampled from complex task distributions. This indicates
that task-specific initialization can produce an improvement over
the global initialization. PPN propagates the the prototype of each
class to its child classes on the graph and buffers the prototypes for
further updates. It outperforms most of the baseline approaches,
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Table 2: Comparison between the proposed and baseline approaches on Image-graph of image classification problem. Accuracy
±95% confidence intervals under two sampling strategies are reported.

Methods Subgraph sampling Random sampling

5-way 1-shot 5-way 5-shot 10-way 1-shot 5-way 1-shot 5-way 5-shot 10-way 1-shot
MAML 38.12±1.06% 53.82±1.14% 21.15±0.91% 47.50±1.04% 60.90±1.10% 32.70±0.67%
MMAML 39.60±0.84% 54.23±1.19% 23.05±1.16% 47.34±1.05% 61.96±0.88% 32.40±1.20%
HSML 38.14±1.01% 54.85±1.08% 21.36±1.03% 46.56±1.01% 62.05±0.98% 32.68±0.66%
MatchingNet 38.21±1.08% 50.64±1.07% 25.16±0.75% 47.37±1.04% 64.03±0.81% 33.87±0.64%
ProtoNet 38.50±1.03% 54.31±1.06% 25.29±0.63% 46.95±1.04% 65.73±0.96% 33.65±0.69%
RelationNet 36.46±1.06% 51.87±1.01% 23.40±0.73% 49.94±1.06% 65.89±0.88% 34.16±0.64%
PPN 45.08±1.04% 53.32±1.05% 36.32±1.23% 56.35±1.01% 65.90±0.92% 49.47±1.31%
TAdaNet 48.85±1.17% 55.29±1.13% 38.55±1.31% 60.01±0.98% 69.38±0.90% 52.20±1.24%

Table 3: Comparison between the proposed and baseline approaches on MIMIC of disease classification problem. Accuracy
±95% confidence intervals under two sampling strategies are reported.

Methods Subgraph sampling Random sampling

3-way 1-shot 3-way 5-shot 5-way 1-shot 3-way 1-shot 3-way 5-shot 5-way 1-shot
MAML 40.54±0.95% 45.47±0.94% 26.29±0.61% 46.20±0.97% 53.70±0.94% 31.97±0.74%
MMAML 41.21±0.79% 46.32±1.01% 26.94±0.62% 45.91±0.98% 54.93±0.90% 32.25±0.78%
HSML 40.97±0.41% 45.76±0.86% 27.01±0.70% 45.94±0.84% 53.14±0.41% 31.04±0.70%
MatchingNet 39.12±0.70% 43.26±0.80% 26.08±0.57% 43.87±0.77% 50.92±0.92% 29.64±0.63%
ProtoNet 38.68±0.68% 46.24±0.97% 25.79±0.54% 42.92±0.72% 54.08±1.00% 29.61±0.65%
RelationNet 39.00±0.87% 42.46±0.96% 21.38±0.43% 43.85±0.89% 52.23±0.95% 28.67±0.61%
PPN 45.59±0.85% 50.55±0.99% 30.67±0.67% 51.54±0.90% 58.16±0.93% 38.59±0.68%
TAdaNet 49.74±0.92% 52.05±0.91% 32.56±0.67% 54.06±0.94% 59.05±0.92% 40.31±0.72%

especially under 1-shot learning. This indicates the effectiveness
of learning from external information in the graph. Besides allow-
ing message passing through graphs for prototype learning, the
proposed method TAdaNet also learns task relationships and cus-
tomizes model parameters for different tasks, so that it outperforms
baseline approaches. We also observe that the performances of all
methods under subgraph sampling are generally lower than those
under random sampling. The reason is that in subgraph sampling,
classes that form a task come from the same subgraph and share
some similarities. Distinguishing these classes is more difficult than
distinguishing irrelevant classes randomly sampled from the data.
For example, distinguishing "heart failure" from "myocardial infarc-
tion" is more difficult than from bone disease. However, learning
task relationships and customizing task-specific model parameters
can be more helpful under subgraph sampling compared with base-
line approaches, as ourmethod can trigger similar initial parameters
for tasks sampled from the same subgraph.

In Table 3, we show the performance comparison of different
methods on disease classification problem under 3-way 1-shot, 3-
way 5-shot and 5-way 1-shot settings. _ is set to 0.8. In this problem,
each task is comprised of sampling 3 or 5 diseases from the target
nodes of the disease ontology, and each disease contains a few pa-
tient examples. Due to the sparsity and complexity of healthcare
data, disease classification is a more difficult problem than image
classification. The relative comparison between methods is consis-
tent with Table 2, and our method achieves the best performance.

4.2.2 Ablation Study. To evaluate the contribution of different com-
ponents in the proposed framework, we conduct the following ex-
periments. TAdaNet-ta is the proposed model without task-specific
customization part, and the method learns task invariant prototypes
for prediction. TAdaNet-mem is the one without memory network,
so that task embeddings do not retrieve historical stored informa-
tion. TAdaNet-reg has no task-relational regularization term L𝑐 , so
that task embeddings are learned independently, without explicitly
considering task relations in the graph.

The results on two datasets are shown in Table 4 and Table 5.
Comparing TAdaNet-ta with TAdaNet, we observe that the per-
formance drops dramatically after removing the task-specific cus-
tomization part. This shows the importance of customizing task-
specific parameters. With the customized parameters, tasks can
be quickly adapted to their optimized parameters, resulting better
results than using global parameters. Comparing TAdaNet-reg with
TAdaNet, we see that using graph structures to regularize the task
representations which better identifies the relationships among
tasks, is beneficial to the classification. Also, retrieving informa-
tion from historical tasks helps to enhance task representations, as
indicated by comparing with TAdaNet-mem.

4.2.3 Visualization. In Figure 2, we randomly sample 600 tasks
from three subgraphs on Image-graph, and use t-SNE [21] to visu-
alize the task embedding vectors learned by HSML and TAdaNet.
The root nodes of the three subgraphs which can be viewed as the
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Table 4: Ablation study on Image-graph.

Methods Subgraph sampling Random sampling

5-way 1-shot 5-way 1-shot
TAdaNet-ta 44.36±1.07% 54.48±1.05%
TAdaNet-mem 45.38±1.15% 56.87±1.01%
TAdaNet-reg 47.29±1.15% 57.50±0.98%
TAdaNet 48.85±1.17% 60.01±0.98%

Table 5: Ablation study on MIMIC.

Methods Subgraph sampling Random sampling

3-way 1-shot 5-way 1-shot
TAdaNet-ta 45.98±0.85% 32.56±0.67%
TAdaNet-mem 45.36±1.20% 38.25±0.66%
TAdaNet-reg 47.30±0.90% 37.05±0.66%
TAdaNet 49.74±0.92% 40.31±0.72%

semantics of tasks are "domestic animal", "chordate" and "instru-
mentation". Since tasks sampled from the same subgraph are more
related to each other, their embeddings are closer to each other. As
in Eq. (9), tasks with closer representations in the embedding space
can produce similar parameter gates [ and trigger similar model
parameters for classification; while far apart tasks will make the
model parameters more different, allowing less information to be
shared among each other. The results indicate the our method is
able to learn the similarity relations among tasks. HSML is a method
that can identify tasks in different clusters using hierarchical clus-
tering. Since HSML relies on handcrafted design of hierarchical
clustering structure, the task relationship learned by HSML may
not accurately reflect the graphical structure of the data.

(a) HSML (b) TAdaNet

Figure 2: t-SNE visualization of task embeddings under sub-
graph sampling on Image-graph dataset. Dots with the same
color are the tasks sampled from the same subgraph.

4.2.4 Parameter Study. We evaluate the performance of the pro-
posed method with respect to different values of two hyperparame-
ters, i.e., _ and 𝛼 .
Parameter _. It is used in Eq. (3) for balancing the contribution
of the initial prototype to the final updated one. The trends on
Image-graph and MIMIC datasets are depicted in Figure 3a and
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Figure 3: Accuracy with respect to _ on two datasets.

Figure 3b, respectively. In Figure 3a, under the setting of 5-way 1-
shot, the accuracy value improves with respect to _ for both random
sampling and subgraph sampling, while it does not change much
under 5-way 5-shot. Similar observations can be found in Figure 3b.
This indicates that more information from the ancestors can help
the learning process, especially for 1-shot learning. The parameter
study on _ suggests that graph information can be more helpful
when there are very limited data examples.
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Figure 4: Accuracy with respect to 𝛼 on MIMIC.

Parameter 𝛼 . We also investigate the performance in terms of
different values of the loss balancing term 𝛼 on MIMIC dataset. 𝛼
controls the weight of the task encoder loss obtained from Eq. (8)
in the overall loss. The results are shown in Figure 4. _ is set to
0.8 in the experiments. Various values of 𝛼 have been selected
in the range of [0.5, 1000]. To make the figure readable, log 10 is
applied to the 𝑋 -axis. From the figure, we can see that the model
is insensitive to 𝛼 . However, the performances under four settings
slightly decrease when 𝛼 is large. This may be due to the fact
that a large 𝛼 restricts the task embeddings to be the mean of class
prototypes, while it could be hard to identify task relationships if the
class representations have large variance. Therefore, using the task
encoder network rather than directly using the mean of prototypes
brings more flexibility to incorporate task characteristics.

5 CONCLUSION
In this paper, we proposed a task-adaptive metric-based meta-
learning framework called TAdaNet, to facilitate meta-learning
for handling tasks sampled from complex distributions. In the prob-
lem, a hierarchical graph whose leaf nodes are the target classes for
few-shot learning is given. The coarse nodes in the graph provide
extra information which can help in handling the data insufficiency
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issue. Moreover, the paths that relate tasks on the graph are helpful
in identifying the task relationships. The proposed approach utilizes
the graph structure in two ways: refining each class’s prototype
by aggregating the information from its ancestors’ prototypes on
the graph; and regularizing the task representations to trigger task-
specific customization for model parameters. In the experiments,
we compared the proposed method with various state-of-the-art
approaches under the setting of complex task distributions. Ex-
perimental results show that TAdaNet can effectively utilize the
graph-enriched information to learnmore accurate class prototypes,
and identify the task relations to adapt task-specific metrics for clas-
sification. We also applied the proposed approach to a real-world
problem, i.e., disease prediction. We utilized the well-organized
disease ontology to provide graphical information for TAdaNet.
The experimental analysis on two completely different applications
demonstrates the generality of the proposed approach.
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A APPENDIX
A.1 MIMIC Data Preprocessing
MIMIC database contains medical records of around 60,000 patients
in critical care units, involving over 6,000 diseases represented
by ICD-9 diagnosis codes. To extract patient cohorts for disease
prediction task, we first remove common disease codes according to
their frequency of occurrence, and then select target diseases based
on their ICD-9 code distribution.We ensure that the selected disease
cohorts do not have overlapped patients, and for each disease cohort,
there are at least 20 patients. Table 6 shows a subset of our selected
diseases. In MIMIC, each patient may have more than one hospital
admissions. In this work, we consider each visit as a unique data
example.

The time series variables are the physiological features extracted
from tables in MIMIC including lab values, chart events and vital
signs. We select informative variables following medical references,
and remove those variables withmore than 50%missing rate. Finally,
there are 31 physiological variables used in this work including: HR,
systolic blood pressure, DBP, mean BP, respiratory rate, oxygen sat-
uration, temperature, partial pressure of carbon dioxide, ph, lactic
acid, co2, pos end pressure set, tidal volume observed, peak inspi-
ratory pressure, hemoglobin, hematocrit, white blood cell count,
chloride, creatinine, glucose, magnesium, sodium, blood urea nitro-
gen, calcium, phosphorous, platelets, prothrombin time pt, partial
thromboplastin time, prothrombin time, weight and potassium. To
make sure that all patients are on the same page, we extract data
from the first 48 hours duration after patients’ admission to the
ICU. We impute the missing variables with 𝑘-nearest neighbors
first, and fill the remaining missing values with the mean values of
corresponding variables.

The discrete variables are the remaining ICD-9 codes with dis-
ease indicator codes being removed. The discrete variables contain
symptoms, complications and related procedures which provide
useful information for disease identification. As in MIMIC-III, most
patients have only one visit and we consider each visit as a data
example, the discrete features can be represented by a binary vector.
We extract 3,103 ICD-9 codes in this work, so that each example is a
3,103 dimensional binary vector, with "1" indicating the occurrence
of a certain code, and "0" otherwise.

A.2 Experimental Settings
A.2.1 Backbone Network for MIMIC Dataset. For the disease pre-
diction task on MIMIC, we use a CNN-based sequence learning
structure for time series and a multilayer perceptron (MLP) for
discrete variables. For time series, we adopt the one-directional
convolution operations to capture patterns across the temporal
dimension. For all the baseline approaches and proposed method,
we use a one-layer CNN network with 64 filters for time series
and a two-layer MLP for discrete data, and combine the learned
vector representations through a fully-connected layer to produce
the prediction. The network structure is shown in Figure 5.

A.2.2 Baseline Methods Description. The details of the baseline
methods are as follows:
•MAML [6] learns a shared initialization of a backbone model’s

parameters and achieves fast adaptation on new tasks. For inner

Table 6: A subset of target diseases for classification.

Disease Category ICD-9
Osteomyelitis musculoskeletal 730
Osteitis deformans musculoskeletal 731
Curvature of spine musculoskeletal 737
Contact dermatitis skin and subcutaneous 692
Erythematous skin and subcutaneous 695
Acute renal failure genitourinary system 584
Chronic renal failure genitourinary system 585
Disorders from renal failure genitourinary system 588
Vascular insufficiency of intestine digestive system 557
Gastritis and duodenitis digestive system 535
Herpetic whitlow infectious and parasitic 546
Hypotension circulatory system 458
Atherosclerosis circulatory system 440
Cerebrovascular disease circulatory system 433
Acute pulmonary heart disease circulatory system 415
Hypertensive heart and renal disease circulatory system 404
Diseases of mitral valve circulatory 394
Vertiginolls syndrome nervous and sense 386
Disorders of conjunctiva nervous and sense 372
Blindness nervous and sense 369
Myoneural disorders nervous and sense 358
paralytic syndromes nervous and sense 344
cerebral degenerations nervous and sense 331
Bacterial meningitis nervous and sense 320
Mild mental retardation mental disorders 317
Drug psychoses mental disorders 292
Disorders of adrenal glands immunity disease 255
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Figure 5: Backbone model structure for MIMIC dataset.

gradient updates, we set the step size to 0.05 and the number of
gradient updates to 5. For outer loop, we set the learning rate to
0.001.
• MMAML [32] augments MAML with the capability to identify

themode of tasks sampled from a heterogeneous task distribution. It
modulates the meta-learned prior parameters through task-specific
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ebmeddings, to better adapt to tasks with different modes. The
task embedding network we adopt is LSTM aggregator, and the
modulation operation is feature-wise linear modulation (FiLM).
• HSML [36] pursues a hierarchically structured meta learning

framework to balance generalization and customization of trans-
ferable knowledge. It preserves knowledge generalization among
a cluster of similar tasks and customizes knowledge to different
clusters of tasks. We adopt the pooling autoencoder aggregator to
learn task representations for simplicity.
•MatchingNet [31] employs the idea of metric learning and uses

attention mechanism to enable rapid learning.
• ProtoNet [28] learns a metric space in which classification

is performed by computing distances between a query vector to
prototypes of each class. A prototype is the mean vector of the
embedded support points belonging to a certain class.
• RelationNet [29] performs classification by computing the

pairwise relation scores between query images and the few support
examples of each class. The feature maps obtained from the CNN
backbone are concatenated and further learned through two CNN
layers and a fully connected (FC) layer to obtain the relation score.
It is particularly designed for image classification, so we modify

the relation learning module for MIMIC dataset. We concatenate
the learned feature maps of the time series part, followed by a CNN
layer and an FC layer. Meanwhile, we also concatenate the vector
representations of discrete variables, followed by an FC layer. The
relation score is obtained by learning from the two parts.
• PPN [16] uses weakly-labeled data for meta-learning on few-

shot classification. It learns an attention mechanism which prop-
agates the prototype of one class to another on a given graph.
Both PPN and TAdaNet adopt prototype propagation. However,
we do not rely on level-wise training on subgraphs and buffered
prototypes for update. TAdaNet learns task-adaptive metric by
considering the task relationships provided on the given graph.

All deep models in this paper are implemented by PyTorch 1.45.
Since the original HSML is based on Tensorflow6, we re-implement
it to account for our experimental setting. All the models use the
same backbone structure. For all methods, adam optimizer is used
with learning rate 0.001. Early stopping strategy is adopted when
the validation accuracy does not improve for 10 epochs.

5https://pytorch.org/
6https://www.tensorflow.org/
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