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Abstract—Predicting patients’ risk of developing certain dis-
eases is an important research topic in healthcare. Personalized
predictive modeling, which focuses on building specific models
for individual patients, has shown its advantages on utilizing
heterogeneous health data compared to global models trained
on the entire population. Personalized predictive models use
information from similar patient cohorts, in order to capture
the specific characteristics. Accurately identifying and ranking
the similarity among patients based on their historical records
is a key step in personalized modeling. The electric health
records (EHRs), which are irregular sampled and have varied
patient visit lengths, cannot be directly used to measure patient
similarity due to lack of an appropriate vector representation.
In this paper, we build a novel time fusion CNN framework
to simultaneously learn patient representations and measure
pairwise similarity. Compared to a traditional CNN, our time
fusion CNN can learn not only the local temporal relationships
but also the contributions from each time interval. Along with the
similarity learning process, the output information which is the
probability distribution is used to rank similar patients. Utilizing
the similarity scores, we perform personalized disease predictions,
and compare the effect of different vector representations and
similarity learning metrics.

I. INTRODUCTION

Accurately predicting diseases plays a significant role in

public health, especially at the early stage which allows pa-

tients to take prevention treatments in time. With the growing

volume and availability of electronic health records (EHRs),

predictive modeling tasks for disease progression and analysis

have obtained increasing interest from researchers. The EHR

data are temporally sequenced by patient visits with each

visit represented as a set of high dimensional clinical events.

Mining EHRs is especially challenging compared to standard

data mining tasks, due to its noisy, irregular and heterogeneous

nature. A conventional approach of disease prediction is the

one-size-fit-all model [1]. That is, using all available training

data to build a global model, and then with this model,

predicting the risk of diseases for each patient. The benefit

of applying a one-size-fit-all model is that it captures the

overall information of the entire training population. However,

patients may have different phenotypes, different medical

conditions, etc. Using a global model may miss some specific

information that is important for individual patients. Thus,

building a targeted, patient-specific model for each individual

patient is urgent and important for personalized medicine.

Recent studies [2–5] show that personalized models can

improve predictive performance over global models. A general

framework for personalized prediction contains two stages: (1)

measuring the similarity among patients, and (2) building a

separate model for each patient using his/her similar cohorts.

This framework is motived by the working process of human

doctors, i.e., after reviewing or recalling the diagnosed patients

with similar diseases or symptoms, the doctors then carefully

make decision. If doctors can find similar patients, the prob-

ability of successfully curing this patient may improve a lot.

Many similarity learning methods have been proposed [6–10]

on healthcare datasets. However, these models are developed

for handcrafted vector representations such as demographics

or average numerical values, without considering the temporal

information from different visits. For the longitudinal EHR

data, the number of patient visits varies largely, due to patients’

irregular visits and incomplete recordings. The aforementioned

learning metrics cannot be directly applied to the longitudinal

data, since the historical records of each patient do not

naturally form a comparable vector. Therefore, one of the

key challenges in measuring patient similarity is to derive an

effective representation for each patient without loss of his/her

historical information.

Recently, deep learning approaches have been widely

adopted and rapidly developed in patient representation learn-

ing [11–18] such as autoencoder, recurrent neural networks

(RNNs) and convolution neural networks (CNNs). In [19],

CNN has shown it superior ability on the task of measuring

patient similarity. However, one drawback of the traditional

CNN architecture is that it could not fully utilize the temporal

and contextual information of EHRs for disease prediction.

Consequently, simultaneously modeling temporality and con-

tent of EHR data is more challenging.

To tackle the aforementioned challenges and issues, in

this paper, we aim to solve the following key problems in

personalized prediction: how to build a model to accurately

measure patients’ similarity from their historical records, and

how to build an accurate personalized prediction model with

the learned similarities. To achieve these goals, we first design
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a novel time-fusion CNN based framework to account for the

temporality across different time intervals. With the proposed

framework, we can generate the vector representation for

each patient. Based on the learned patient representations,

a matching metric is then introduced to obtain a similarity

representation. Considering the practical meaning, we add a

firm symmetric constraint to the framework structure. This

similarity learning framework is end-to-end, which learns

patient representations and pairwise similarity simultaneously.

Since the similarity probability between a pair of patients

indicates the risk level of the two patients developing the

same disease, we use it as the score to rank the similarity

among patients. Finally, we build a personalized model for

each patient using his/her similar cohorts. In summary, our

contributions are as follows:

• We build a framework to jointly learn patient EHR

representations and pairwise similarity, without the hand-

crafted feature aggregations. With the framework, parameters

of representation and similarity learning can be optimized

simultaneously, yielding higher accuracy.

• We develop a time-fusion CNN model that not only

preserves the local temporality across adjacent visits but also

considers the global contributions from different time intervals.

• Our experimental results show that our similarity learning

framework can learn better representation vectors for patients’

historical information and improve the disease prediction ac-

curacy. The personalized model based on weighted sampling

improves personalized prediction accuracy compared to other

commonly used strategies.

II. METHOD

Our model follows the two-stage manner: measuring patient

similarity and performing personalized prediction. In this sec-

tion, we first provide our end-to-end framework of similarity

learning based on pairwise training CNN. Next, we talk about

personalized predictive models.

A. Similarity Learning

1) Basic Notations: A patient’s health record contains a

sequence of visit information, and in each visit, medical codes

are recorded indicating the disease or treatment the patient

suffered or received. The codes can be mapped to the Inter-

national Classification of Disease (ICD-9)1. We denote all the

unique medical codes from the EHR data as c1, c2, ..., c|C| ∈ C,

where |C| is the number of unique medical codes. Assuming

there are N patients, the n-th patient has a number of visits

Tn. Therefore, each patient record can be viewed as a matrix,

where the horizontal dimension corresponds to medical events

and the vertical dimension corresponds to visits. The (i, j)-
th entry of a matrix is 1 if code cj is observed at time

stamp Vi for the corresponding patient. Since the number of

visits of different patients varies, we pad zero to the visit

dimension, making each patient have a fixed length of visits

t = max{Vi}Tn
i=1, for the sake of CNN operations.

1https://en.wikipedia.org/wiki/List of ICD-9 codes
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Fig. 1: Time-fusion CNN for vector representation learning.

The patient embedding matrix is segmented into several sub-

frames. For each sub-frame, one-side convolution and pooling

are applied to obtain a vector representation. The set of vectors

are weighted to form a comprehensive vector representation.

2) Visit Embedding: The original one-hot representation

ignores code relations, and makes the EHR matrix high

dimensional and sparse. To reduce feature dimensions and

learn relationships among codes, we use a fully connected

network layer to embed each code into a vector space. As a

result, each visit vi is mapped into a vector xi ∈ R
d using the

formula: xi = ReLU(W vvi+bv), where d is the embedding

dimension, W v and bv are the weight matrix and bias vector

to be learned, and the activation function ReLU is defined as

ReLU(x) = max(x, 0). The adoption of ReLU ensures non-

negative representation, which enables the learned vector to

be interpretable [20]. After the embedding operation, we can

obtain an embedding matrix X ∈ R
t×d for each patient.

3) Convolutional Neural Network: Different from images

with spatial relations across pixels, the positions of medical

codes have no spatial/temporal meaning. Therefore, a one-side

convolution operation across the time dimension is applied to

capture the sequential relation across adjacent visits instead of

using a standard 2D CNN.

The convolutional layer has p different filter sizes and the

number of filters per size is q, so that the total number of filters

is m = pq. Each filter is defined as wc ∈ R
h×d, where h is

a window size of visit length, meaning that the convolution

operation is applied over h sequential timestamps. Suppose

a filter is applied over a concatenation from visit vector xi

to xi+h−1, a feature ci is generated using ci = ReLU(W c ·
xi:i+h−1 + bc). This filter is applied to each possible window

of timestamps {x1:h,x2:h+1, ...,xt−h+1:t} with a stride equal

to 1, to produce a feature map c = {c1, c2, ..., ct−h+1}, where

c ∈ R
t−h+1. Since we have totally m filters, we can obtain

m feature maps. The outputs from the convolutional layer

are then passed into the pooling layer. A max pooling is

applied over c as ĉ = max{c}, where ĉ is the maximum

value corresponding to a particular filter. The key idea here is

to capture the most important feature for each feature map. It

can naturally deal with variable visit lengths, since the padded

visits have no contribution to the pooled outputs. The pooled
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Fig. 2: The overall framework of pairwise patient similarity learning. The one-hot EHR matrix of patient A is first mapped

into an embedding matrix with a lower feature dimension, and then segmented into several sub-frames. One-side convolution

and max pooling are applied on each sub-frame. The sub-frame vectors are then aggregated to form a comprehensive vector

for patient A. Patient B shares the same embedding and CNN parameters. The patient representations then pass through a

matching matrix and a converting layer to get the similarity representation vector. Softmax layer is added after the similarity

vector to utilize the label and update all the parameters.

outputs from all the filters are concatenated to form a vector

representation h ∈ R
m. h is the vector representation of the

original embedding matrix X .

4) Time Fusion: Although the convolution operation ap-

plied across time considers the relations across adjacent visits,

it does not fully utilize the temporal information, and treats the

importance of each time stamp equally. In practice, a symptom

near the onset of a disease is usually more important than

the same one appearing far away from the onset date. To

account for the temporal information, we borrow the idea of

time fusion in [12, 21] and further modify the CNN model.

We segment every data sample as a set of short, fixed-sized

sub-frames. Each sub-frame contains several contiguous visits,

covering a certain time interval. Our model considers how

much each sub-frame contributes to the final decision.

The framework of our time fusion CNN is shown in Fig. 1.

The patient embedding matrix is first segmented into sub-

frames with each sub-frame a fixed length of k visits. Since

the segmentation operation may split the connection between

border time stamps of two adjacent sub-frames, we use a

sliding window to account for the overlap between sub-frames.

For each sub-frame, we apply the convolution and pooling

operations described in Section II-A3 to obtain a vector rep-

resentation. Then we use weighted average of these vectors to

obtain a comprehensive vector representation for the original

embedding matrix. The aggregation weight of each sub-frame

is learned using the formula: αi = tanh(W T
ahi + ba). The

weights are normalized as α = Softmax([α1, α2, ..., αt]).
The weights do not depend on the number of sub-frames.

Therefore, this weighted average can reduce the effect from

visits padded by zeros. The overall representation for a patient

is h̃ =
∑

αihi.

5) Similarity Learning: The similarity between a pair of

vectors can be measured by [8]: S = h̃AMh̃B , where the

matching matrix M ∈ R
m×m is symmetric for the reason of

practical meaning. To ensure the symmetric constraint of M , it

is decomposed as M = LTL, where L ∈ R
g×m with g < m

to ensure a low rank characteristic. Different from [19] which

directly concatenates the vector representations h̃A, h̃B and

S, we consider the symmetric constraint and convert patient

vectors to get a similarity vector, as to ensure that the order of

patients has no effect on the similarity score. We first convert

h̃A and h̃B into a single vector with their dimension holds

using the formula: H = W hh̃A ⊕ W hh̃B , where W h ∈
R

m×m and ⊕ is a bitwise addition. After that, H and S are

concatenated and then fed into a fully connected softmax layer,

to get an output probability ŷ, indicating the similarity degree

between two patients. Here we set the ground truth y as 1 if

two patients has the risk of developing the same disease. We

use cross-entropy between y and ŷ to calculate the loss for

patient pairs:

L =
1

Ñ

Ñ∑

i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)),

where Ñ is the total number of patient pairs. Since there are

N patients, Ñ would be N(N − 1)/2. The overall framework

of supervised patient similarity learning is shown in Figure 2.

Our model learns vector representations and similarity scores

simultaneously. This similarity learning process is end-to-end,

and all the parameters are updated through back-propagation.

B. Personalized Prediction

The learned similarity can be used for personalized pre-

diction. The similarity score from Section II-A5 can be used

to measure the similarity degree between a pair of patients.

For each test patient, we first calculate his/her similarity

probability with each of the training patients, and then rank

the training patients according to their similarity scores. We

then build a specific personalized model for each patient based
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on his/her similarity cohorts. In this paper, we use three ways

to build the personalized model:

1) K Nearest Neighbors: We first select k training patients

with the topk similarity probabilities for a test patient, and then

use the most common disease appearing among them as the

prediction. Intuitively, since the patients have similar health

records/symptoms, it is highly possible that they have the risk

of developing the same disease.

2) Discriminate Classification: In this way, predictive mod-

els are trained on patients with k highest and lowest scores.

Patients who are dissimilar with the testing patient are discrim-

inative for the classification. Here we use a multi-class logistic

regression as the predictive model. The model parameters are

trained separately to fit each specific patient.

3) Weighted Sampling: The above two methods need to

optimize k, since the prediction performance highly depends

on the learned similarity score and the number of selected

patients. Therefore, we propose to use weighted sampling to

select training patient cohorts. Specifically, this procedure is

implemented by sampling patients with replacement following

the distribution of similarity scores. Therefore, similar patients

are more likely to be chosen, while those below the similarity

threshold could also be sampled. After that, prediction models

can be built using the sampled data. The above procedures are

repeated several times, and majority voting among the results

is used to get the most likely prediction.

III. EXPERIMENTS

In this section, we evaluate our model on a real world EHR

dataset, compare its performance with other state-of-the-art

prediction models, and show that it yields better performance.

A. Data Description

We conduct experiments on a real world dataset, which

consists of medical claims from more than 100,000 patients

over two years. Each patient has a longitudinal visit sequence,

represented by a set of high dimensional clinical events (i.e.

ICD-9 codes). To perform disease prediction, we extract three

patient cohorts from the dataset: diabetes, obesity, and chronic

obstructive pulmonary disease (COPD). Following the disease

selection criteria in [22], we identify the diseased patients

who have 1) qualifying ICD-9 codes for a specific disease

in the encounter records or medication orders, and 2) at least

three clinical encounters with qualifying ICD-9 codes occur

within 12 months. The date at which the first target diagnosis

appears is denoted as the index date. We split the patient

sequences at the index date into two parts, and use only the

part before the index date which contains early symptoms and

complications for similarity learning and disease prediction.

To enable distinct cohorts, we remove overlapped patients so

that each patient only suffers from one disease. Moreover, we

remove the clinical events which appear more than 90% of

patients or less than five patients to avoid biases and noise.

Finally, there are 3,852 distinct codes, and the maximum

visit length is cut to be 150. The statistics of the dataset is

summarized in Table I. The dataset is randomly divided into

training and testing sets in a 0.8:0.2 ratio. For the similarity

training process, the ground truth is binary, as two patients

having the same disease are considered as a positive sample

pair while having different diseases are a negative sample pair.

The prediction process is a multi-class classification problem

corresponding to the three diseases.

TABLE I: Statistics of dataset.

Cohorts Diabetes Obesity COPD Total

# Patients 3,214 3,441 2,328 8,983
Total # events 160,920 217,583 136,886 515,389
Avg.# of visits 23.03 30.62 26.91 26.25
Avg.# event per patient 50.44 63.76 58.42 57.37

B. Experimental Setup

Here we give some details of the model implementation,

and the baseline approaches to compare with.

1) Model Implementation: Our task is to predict the risk

of developing a certain disease for each patient. We first train

the similarity model described in Section II-A5 to obtain the

optimized parameters of CNNs and the matching metric. Then,

using the similarity framework, we calculate and rank the

matching degree of each testing instance and all the training

data. After that, personalized prediction methods in II-B are

used for multi-label prediction.

The similarity framework is implemented with Tensor-

flow [23]. Adam [24] is used to optimize model parameters.

Different from a normal CNN model with the input to be a

mini-batch of patients, the similarity framework is trained on

a batch of patient pairs to ensure that each of the patient pairs

can be measured. With regard to the overfitting issue, we use

the L-2 regularization and dropout strategy.

2) Baseline Approaches: To validate the performance of the

proposed model for personalized prediction, we consider the

following aspects: whether the learned vector representations

can better represent the original data; whether the supervised

similarity framework is effective; and whether the personalized

modeling can distinct heterogeneous groups.

We consider three ways to map the EHR matrix into

vector representations: aggregated vectors (aggr. vecs), CNN

learned vectors (CNN vecs), and vectors by our time fusion

CNN (CNN t vecs). For the aggregated vectors, we count

the number of medical codes for each patient based on all

his/her visits, so that each element indicates the frequency of

a corresponding code. The CNN vectors are learned through a

traditional CNN model, while the CNN t vectors are learned

using our time fusion CNN variant.

Since the proposed architecture is for personalized disease

prediction, we first compare it with a global model to show

the necessary of designing personalized predictive models.

• Global model (GM) with multi-label prediction. This is

a one-size-fit-all model which uses the entire training data

to build a global model for the prediction of all the testing

data. This model does not consider the inherent groupings

of different patients. We use logistic regression (LR) as the

classifier, and apply it on the three vector representations.
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TABLE II: Disease prediction performance using different vector representations, similarity learning methods and final

prediction strategies.

Personalized Predictive Models

Method Global Model KNN Weighted sampling Personalized LR

Euclidean Cosine Sup.sim Euclidean Cosine Sup.sim Euclidean Cosine Sup.sim

Aggr. vecs 0.7180 0.5669 0.5940 0.7558 0.5812 0.6279 0.7556 0.6073 0.6574 0.7614
CNN vecs 0.7508 0.7280 0.7402 0.7836 0.7274 0.7469 0.8109 0.7235 0.7525 0.8153
CNN t vecs 0.7736 0.7530 0.7547 0.8025 0.7731 0.7736 0.8164 0.7686 0.7758 0.8115

The proposed model consists of two parts: similarity learn-

ing and final prediction. We use the following ways to perform

the final disease prediction:

• Personalized prediction strategies. To find out an appro-

priate way to build personalized models, we compare the three

strategies as discussed in Section II-B: KNN, discriminative

classification and weighted sampling. For the discriminative

classification, we apply personalized LR for each patient using

his/her similarity training samples.

We can use several methods to measure patient similarity.

In order to fairly and clearly show the performance of all the

personalized prediction approaches, in our experiments, we

employ the following similarity strategies on each personalized

prediction model:

• Traditional similarity learning methods: Euclidean dis-

tance and cosine distance. The two types of distances are

calculated on the three vector representations. We then build

personalized models based on the learned similarity distances.

• Supervised similarity (Sup. sim) learning methods. This

group of methods use the same similarity metric in Sec-

tion II-A5, and can be regarded as reduced baselines of our

method. Vector representations, together with the matching

matrix are fed into a softmax layer to get the similarity

probability as the scores. We then build personalized models

based on the learned similarity scores.

C. Experimental Results

We compare both the performance of personalized disease

prediction and similarity learning. The main task is disease

prediction, while similarity learning is the key step to achieve

high prediction accuracy.

1) Disease Prediction Results: The experimental results are

shown in Table II. It contains the comparison among three

vector representations (Aggr. vecs, CNN vecs, CNN t vecs),

four disease prediction methods (GM, KNN, weighted sam-

pling, personalized LR), and three similarity learning methods

(Euclidean, cosine, Sup.sim). Among them, GM is a one-

size-fit-all model; KNN, weighted sampling and personalized

LR are methods for the final personalized prediction; and

Euclidean, cosine and Sup.sim are similarity learning methods.

With the similarity ranking from the three distance metrics,

we use KNN (k = 10) for personalized prediction, as the

results change very little within a certain range of k. For fair

comparison, we also experiment on weighted sampling and

personalized LR with a sample size 500 to perform prediction.

In total, there are 27 combinations of the vector represen-

tations, similarity learning methods and final personalized

predictions. We use the overall accuracy as the measurement

criteria, which is the ratio of the number of correctly predicted

labels and total number of testing samples.

From Table II, we can see that under each the personalized

prediction task, the vector representations learned by CNNs

can notably improve the performance of different distance

metrics. Since the static high-dimensional aggregated vector

representation completely ignores the temporal relationship

across timestamps, it could not exhibit the essence of orig-

inal patient EHR matrix. CNN learns the local temporal

relationships across visits and captures the most important

information of a visit sequence, so that it can notably improve

the classification performance. CNN t not only learns local

temporal relationships, but also measures the contribution from

each smaller time interval, so that it can better represent the

temporal information of the original visit sequences.

Fixing a vector representation, we compare the similarity

learning methods. Euclidean and cosine distances, which are

widely used similarity metrics, are directly applied on the

three vector representations between each pair of patients, with

closer distance for higher similarity. Compared with these two

distance metrics, our supervised similarity method leads to a

better performance. This improvement owes to the utilization

of the label information, as the parameters for similarity

learning are optimized with the guidance of similarity labels.

TABLE III: Confusion matrix of global model using aggre-

gated vectors.

Diabetes Obesity COPD Accuracy

Diabetes 440 159 44 0.6842
Obesity 68 579 42 0.8403
COPD 82 111 273 0.5858

TABLE IV: Confusion matrix of KNN on Sup. sim using

CNN t vectors.

Diabetes Obesity COPD Accuracy

Diabetes 515 74 54 0.8009
Obesity 44 602 43 0.8737
COPD 56 31 379 0.8133

Compared with the global models, personalized predictions

based on supervised similarity can achieve higher accuracy.

This is due to the fact that although the global model considers

the characteristics of the entire training population, it ignores

the inherent cohort nature of individual patients. Personalized

model can better fit each specific, targeted patient. Table

III and Table IV respectively show the confusion matrix of
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a global classification model and our proposed model. The

accuracy indicates the true positive rate for each disease

prediction. We can see that our model can better distinct the

three diseases. In fact, the three diseases do display several

relationships with each other,and share some symptoms and

complications, especially diabetes and obesity, making them

hard to be discriminated. Compared to the global model, our

method can better identify the three disease cohorts, especially

the diabetes and COPD cohorts. Having more detailed sub-

group information within each cohort may help to better

discriminate the heterogeneous nature of EHRs.

TABLE V: Accuracy of similarity learning.

K-means Spectral Sup.sim

Aggr. vecs 0.4840 0.5050 0.6519
CNN vecs 0.5743 0.4195 0.7281
CNN t vecs 0.5751 0.4492 0.7359

2) Similarity Learning results: Since similarity learning is

the main step of personalized prediction, we also evaluate the

performance of our similarity framework. Similar to Section

III-C1, we consider the performance on three levels of vector

representations. Here we focus on only similarity measurement

without going through the disease prediction step. For the

testing patients, we predict whether each pair of patients

are diagnosed with the same disease or not. The measuring

criteria is the ratio of correctly grouped patient pairs and

the total number of patient pairs. We compare our similarity

framework with two popular clustering methods: k-means and

spectral clustering. As in Table V, we can see that under

each method, CNN-based models can learn much better vector

representations. Moreover, supervised similarity framework

significantly outperforms clustering methods on the task of

grouping patient cohorts.

IV. CONCLUSION

Personalized predictive modeling in healthcare aims to find

unique characteristics of individual patients, and build tar-

geted, patient specific predictions. In this paper, we propose a

time-fusion CNN based framework to pairwise measure patient

similarity, and use three ways to perform personalized disease

prediction. Experimental results show that our time fusion

CNN can better represent the longitudinal EHR sequences,

and our end-to-end similarity framework outperforms widely-

used distance metrics. Having the similarity ranks, we then

perform three ways for personalized prediction and show that

weighted sampling can give a stable and high accuracy.
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